

EAST-ADL

Domain Model Specification

Version V2.1.12

EAST-ADL Domain Model Specification version V2.1.12

2 (244)

Revision History

Version Date Reason

1.02 2004-06-30 EAST-ADL developed in the ITEA EAST-EEA project.

2.0 2008-03-20 EAST-ADL2 developed in the EC FP6 project ATESST.
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-
Specification_2008-02-29.pdf

2.1 2010-06-30 Updated version from the EC FP7 project ATESST2 with
Timing concepts from ITEA TIMMO.

2.1.11 2013-05-28 Updated version from the EC FP7 project MAENAD with
Timing concepts from ITEA2 TIMMO-2-USE.

2.1.12 2013-11-28 Minor update of documentation texts, removal of some
textual constraints, properties made visible: internalFailure
and consecutiveTimeCondition.

Copyright © 2011-2013, EAST-ADL Association, www.east-adl.info

Copyright © 2000-2004, AUDI AG

Copyright © 2000-2004, BMW AG

Copyright © 2000-2004, 2008-2010, Centro Ricerche Fiat

Copyright © 2007-2010, Continental Automotive

Copyright © 2000-2008, DaimlerChrysler AG

Copyright © 2006-2010, Delphi/Mecel

Copyright © 2000-2008, ETAS GmbH

Copyright © 2006-2010, Mentor Graphics Hungary

Copyright © 2000-2004, OPEL GmbH

Copyright © 2000-2004, PSA

Copyright © 2000-2004, Renault

Copyright © 2000-2004, Robert Bosch GmbH

Copyright © 2000-2007, Siemens VDO Automotive SAS

Copyright © 2000-2004, Valeo

Copyright © 2000-2004, Vector

Copyright © 2006-2008, Volvo Car Corporation

Copyright © 2000-2010, Volvo Technology AB

Copyright © 2006-2010, VW/Carmeq

Copyright © 2000-2004, ZF

Copyright © 2000-2010, CEA-LIST

Copyright © 2000-2004, INRIA

Copyright © 2006-2010, Kungliga Tekniska Högskolan

Copyright © 2000-2004, LORIA

Copyright © 2000-2004, Paderborn Univerisity-C-LAB

Copyright © 2000-2004, Technical University of Darmstadt

Copyright © 2000-2010, Technische Universität Berlin

Copyright © 2008-2010, University of Hull

http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.east-adl.info/

EAST-ADL Domain Model Specification version V2.1.12

3 (244)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a language specification developed by an informal partnership of
vendors and users, with input from additional reviewers and contributors. This document does not
represent a commitment to implement any portion of this specification in any companyôs products.
See the full text of this document for additional disclaimers and acknowledgments. The information
contained in this document is subject to change without notice.

This specification is provided by the copyright holders and contributors "as is" and any expressed
or implied warranties, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall the copyright owner or
contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use
of this specification, even if advised of the possibility of such damage.

EAST-ADL Domain Model Specification version V2.1.12

4 (244)

Table of Contents ï Overview

Revision History .. 2

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES ... 3

Table of Contents ï Overview .. 4

Table of Contents - Complete ... 6

Part I Introduction ... 14

1 Language Formalism .. 16

2 Abbreviations .. 18

Part II Structural Constructs ... 19

3 SystemModeling ... 20

4 FeatureModeling ... 25

5 VehicleFeatureModeling ... 35

6 FunctionModeling ... 40

7 HardwareModeling .. 55

8 Environment .. 64

Part III Behavioral Constructs ... 66

9 Behavior .. 67

Part IV Variability .. 74

10 Variability .. 75

Part V Requirements .. 89

11 Requirements ... 90

12 UseCases ... 100

13 VerificationValidation .. 104

Part VI Timing ... 112

14 Timing ... 113

15 TimingConstraints ... 118

16 Events ... 135

Part VII Dependability ... 140

17 Dependability .. 141

18 ErrorModel .. 150

19 SafetyConstraints ... 159

20 SafetyRequirement ... 162

21 SafetyCase ... 165

Part VIII Generic Constraints .. 170

22 GenericConstraints ... 171

Part IX Infrastructure .. 175

23 Datatypes .. 176

24 Values ... 183

25 Elements ... 187

26 UserAttributes ... 196

Part X Annexes ... 201

27 Annex A: Notation ... 202

EAST-ADL Domain Model Specification version V2.1.12

5 (244)

28 Annex B: Needs .. 206

29 Annex C: BehaviorDescription .. 212

30 BehaviorDescription .. 213

31 AttributeQuantificationConstraint .. 221

32 ComputationConstraint ... 225

33 TemporalConstraint .. 230

34 Index ... 237

EAST-ADL Domain Model Specification version V2.1.12

6 (244)

Table of Contents - Complete

Revision History .. 2

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES ... 3

Table of Contents ï Overview .. 4

Table of Contents - Complete ... 6

Part I Introduction ... 14

1 Language Formalism .. 16

1.1 Levels of Formalism ... 16

1.2 Specification Structure .. 16
1.2.1 Overview ... 16
1.2.2 Element Descriptions .. 16

2 Abbreviations .. 18

Part II Structural Constructs ... 19

3 SystemModeling ... 20

3.1 Overview ... 20

3.2 Element Descriptions .. 20
3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElement» .. 20
3.2.2 DesignLevel (from SystemModeling) «atpStructureElement» .. 21
3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement» 22
3.2.4 SystemModel (from SystemModeling) «atpStructureElement» .. 23
3.2.5 VehicleLevel (from SystemModeling) «atpStructureElement» ... 23

4 FeatureModeling ... 25

4.1 Overview ... 25

4.2 Element Descriptions .. 25
4.2.1 BindingTime (from FeatureModeling) ... 26
4.2.2 BindingTimeKind (from FeatureModeling) «enumeration» ... 26
4.2.3 Feature (from FeatureModeling) «atpStructureElement» ... 28
4.2.4 FeatureConstraint (from FeatureModeling) .. 29
4.2.5 FeatureGroup (from FeatureModeling) ... 30
4.2.6 FeatureLink (from FeatureModeling) .. 30
4.2.7 FeatureModel (from FeatureModeling) «atpStructureElement» ... 31
4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}... 32
4.2.9 VariabilityDependencyKind (from FeatureModeling) «enumeration» 33

5 VehicleFeatureModeling ... 35

5.1 Overview ... 35

5.2 Element Descriptions .. 35
5.2.1 DeviationAttributeSet (from VehicleFeatureModeling) .. 36
5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»............................... 37
5.2.3 VehicleFeature (from VehicleFeatureModeling) ... 38

6 FunctionModeling ... 40

6.1 Overview ... 40

6.2 Element Descriptions .. 41
6.2.1 AllocateableElement (from FunctionModeling) {abstract} ... 41
6.2.2 Allocation (from FunctionModeling) .. 42

EAST-ADL Domain Model Specification version V2.1.12

7 (244)

6.2.3 AnalysisFunctionPrototype (from FunctionModeling) ... 42
6.2.4 AnalysisFunctionType (from FunctionModeling) ... 42
6.2.5 BasicSoftwareFunctionType (from FunctionModeling) ... 43
6.2.6 ClientServerKind (from FunctionModeling) «enumeration» .. 43
6.2.7 DesignFunctionPrototype (from FunctionModeling) ... 44
6.2.8 DesignFunctionType (from FunctionModeling) ... 44
6.2.9 EADirectionKind (from FunctionModeling) «enumeration» ... 45
6.2.10 FunctionalDevice (from FunctionModeling) .. 45
6.2.11 FunctionAllocation (from FunctionModeling)... 46
6.2.12 FunctionClientServerInterface (from FunctionModeling) «atpType» .. 47
6.2.13 FunctionClientServerPort (from FunctionModeling) .. 47
6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement» 47
6.2.15 FunctionFlowPort (from FunctionModeling) .. 48
6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype» .. 49
6.2.17 FunctionPowerPort (from FunctionModeling) ... 50
6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype» 50
6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType» .. 51
6.2.20 HardwareFunctionType (from FunctionModeling) .. 52
6.2.21 LocalDeviceManager (from FunctionModeling) .. 53
6.2.22 Operation (from FunctionModeling) .. 53
6.2.23 PortGroup (from FunctionModeling) ... 54

7 HardwareModeling .. 55

7.1 Overview ... 55

7.2 Element Descriptions .. 55
7.2.1 Actuator (from HardwareModeling) ... 55
7.2.2 AllocationTarget (from HardwareModeling) {abstract} .. 56
7.2.3 CommunicationHardwarePin (from HardwareModeling) .. 56
7.2.4 ElectricalComponent (from HardwareModeling) «atpType» ... 57
7.2.5 HardwareBusKind (from HardwareModeling) «enumeration» .. 57
7.2.6 HardwareComponentPrototype (from HardwareModeling) «atpPrototype» 58
7.2.7 HardwareComponentType (from HardwareModeling) «atpType» .. 58
7.2.8 HardwareConnector (from HardwareModeling) «atpStructureElement» 59
7.2.9 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement» 59
7.2.10 HardwarePort (from HardwareModeling) «atpStructureElement» .. 60
7.2.11 HardwarePortConnector (from HardwareModeling) «atpStructureElement» 60
7.2.12 IOHardwarePin (from HardwareModeling) ... 60
7.2.13 IOHardwarePinKind (from HardwareModeling) «enumeration» ... 61
7.2.14 Node (from HardwareModeling) ... 61
7.2.15 PowerHardwarePin (from HardwareModeling) ... 62
7.2.16 Sensor (from HardwareModeling) ... 62

8 Environment .. 64

8.1 Overview ... 64

8.2 Element Descriptions .. 64
8.2.1 ClampConnector (from Environment) «atpStructureElement» ... 64
8.2.2 Environment (from Environment) .. 65

Part III Behavioral Constructs ... 66

9 Behavior .. 67

9.1 Overview ... 67

EAST-ADL Domain Model Specification version V2.1.12

8 (244)

9.2 Element Descriptions .. 68
9.2.1 Behavior (from Behavior) .. 68
9.2.2 FunctionBehavior (from Behavior) .. 69
9.2.3 FunctionBehaviorKind (from Behavior) «enumeration» .. 70
9.2.4 FunctionTrigger (from Behavior) ... 71
9.2.5 Mode (from Behavior) ... 72
9.2.6 ModeGroup (from Behavior) ... 73
9.2.7 TriggerPolicyKind (from Behavior) «enumeration» ... 73

Part IV Variability .. 74

10 Variability .. 75

10.1 Overview ... 75

10.2 Element Descriptions .. 77
10.2.1 ConfigurableContainer (from Variability) ... 77
10.2.2 ConfigurationDecision (from Variability) ... 78
10.2.3 ConfigurationDecisionFolder (from Variability) ... 80
10.2.4 ConfigurationDecisionModel (from Variability) {abstract} ... 81
10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract} ... 81
10.2.6 ContainerConfiguration (from Variability) .. 82
10.2.7 FeatureConfiguration (from Variability) ... 82
10.2.8 InternalBinding (from Variability) ... 83
10.2.9 PrivateContent (from Variability) ... 84
10.2.10 ReuseMetaInformation (from Variability) .. 84
10.2.11 SelectionCriterion (from Variability) .. 85
10.2.12 Variability (from Variability) ... 85
10.2.13 VariableElement (from Variability) .. 86
10.2.14 VariationGroup (from Variability) .. 87
10.2.15 VehicleLevelBinding (from Variability) .. 87

Part V Requirements .. 89

11 Requirements ... 90

11.1 Overview ... 90

11.2 Element Descriptions .. 91
11.2.1 DeriveRequirement (from Requirements) ... 92
11.2.2 OperationalSituation (from Requirements) ... 92
11.2.3 QualityRequirement (from Requirements) .. 92
11.2.4 QualityRequirementKind (from Requirements) «enumeration» .. 93
11.2.5 Refine (from Requirements) ... 94
11.2.6 Requirement (from Requirements) ... 94
11.2.7 RequirementsHierarchy (from Requirements) .. 95
11.2.8 RequirementsLink (from Requirements) ... 96
11.2.9 RequirementsModel (from Requirements) .. 97
11.2.10 RequirementsRelationship (from Requirements) {abstract} ... 97
11.2.11 RequirementsRelationshipGroup (from Requirements) .. 98
11.2.12 Satisfy (from Requirements) ... 98

12 UseCases ... 100

12.1 Overview ... 100

12.2 Element Descriptions .. 100
12.2.1 Actor (from UseCases) ... 101
12.2.2 Extend (from UseCases) .. 101

EAST-ADL Domain Model Specification version V2.1.12

9 (244)

12.2.3 ExtensionPoint (from UseCases) .. 102
12.2.4 Include (from UseCases) .. 102
12.2.5 RedefinableElement (from UseCases) {abstract} ... 102
12.2.6 UseCase (from UseCases) ... 103

13 VerificationValidation .. 104

13.1 Overview ... 104

13.2 Element Descriptions .. 106
13.2.1 VerificationValidation (from VerificationValidation) ... 106
13.2.2 Verify (from VerificationValidation).. 106
13.2.3 VVActualOutcome (from VerificationValidation) ... 107
13.2.4 VVCase (from VerificationValidation).. 107
13.2.5 VVIntendedOutcome (from VerificationValidation) ... 108
13.2.6 VVLog (from VerificationValidation) .. 108
13.2.7 VVProcedure (from VerificationValidation) ... 109
13.2.8 VVStimuli (from VerificationValidation) ... 110
13.2.9 VVTarget (from VerificationValidation).. 110

Part VI Timing ... 112

14 Timing ... 113

14.1 Overview ... 113

14.2 Element Descriptions .. 113
14.2.1 Event (from Timing) {abstract} .. 113
14.2.2 EventChain (from Timing) ... 114
14.2.3 PrecedenceConstraint (from Timing) .. 114
14.2.4 Timing (from Timing) ... 115
14.2.5 TimingConstraint (from Timing) {abstract} .. 115
14.2.6 TimingDescription (from Timing) {abstract} .. 116
14.2.7 TimingExpression (from Timing) ... 116

15 TimingConstraints ... 118

15.1 Overview ... 118

15.2 Element Descriptions .. 121
15.2.1 AgeConstraint (from TimingConstraints) .. 121
15.2.2 ArbitraryConstraint (from TimingConstraints) ... 122
15.2.3 BurstConstraint (from TimingConstraints) .. 123
15.2.4 ComparisonConstraint (from TimingConstraints) ... 123
15.2.5 ComparisonKind (from TimingConstraints) «enumeration» .. 124
15.2.6 DelayConstraint (from TimingConstraints) .. 124
15.2.7 ExecutionTimeConstraint (from TimingConstraints) ... 125
15.2.8 InputSynchronizationConstraint (from TimingConstraints) ... 126
15.2.9 OrderConstraint (from TimingConstraints).. 126
15.2.10 OutputSynchronizationConstraint (from TimingConstraints) .. 127
15.2.11 PatternConstraint (from TimingConstraints) ... 128
15.2.12 PeriodicConstraint (from TimingConstraints) .. 129
15.2.13 ReactionConstraint (from TimingConstraints) ... 129
15.2.14 RepetitionConstraint (from TimingConstraints) ... 130
15.2.15 SporadicConstraint (from TimingConstraints) ... 131
15.2.16 StrongDelayConstraint (from TimingConstraints) ... 132
15.2.17 StrongSynchronizationConstraint (from TimingConstraints) ... 133
15.2.18 SynchronizationConstraint (from TimingConstraints) ... 133

EAST-ADL Domain Model Specification version V2.1.12

10 (244)

16 Events ... 135

16.1 Overview ... 135

16.2 Element Descriptions .. 136
16.2.1 AUTOSAREvent (from Events) ... 136
16.2.2 EventFaultFailure (from Events) ... 136
16.2.3 EventFeatureFlaw (from Events) .. 136
16.2.4 EventFunction (from Events) .. 137
16.2.5 EventFunctionClientServerPort (from Events) .. 137
16.2.6 EventFunctionClientServerPortKind (from Events) «enumeration» .. 138
16.2.7 EventFunctionFlowPort (from Events) .. 138
16.2.8 ExternalEvent (from Events) ... 139
16.2.9 ModeEvent (from Events) ... 139

Part VII Dependability ... 140

17 Dependability .. 141

17.1 Overview ... 141

17.2 Element Descriptions .. 143
17.2.1 ControllabilityClassKind (from Dependability) «enumeration» .. 143
17.2.2 Dependability (from Dependability) ... 144
17.2.3 DevelopmentCategoryKind (from Dependability) «enumeration» .. 145
17.2.4 ExposureClassKind (from Dependability) «enumeration» .. 145
17.2.5 FeatureFlaw (from Dependability) .. 146
17.2.6 Hazard (from Dependability) ... 146
17.2.7 HazardousEvent (from Dependability) .. 147
17.2.8 Item (from Dependability) ... 148
17.2.9 SeverityClassKind (from Dependability) «enumeration» .. 148

18 ErrorModel .. 150

18.1 Overview ... 150

18.2 Element Descriptions .. 151
18.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype» ... 151
18.2.2 ErrorBehavior (from ErrorModel) .. 152
18.2.3 ErrorBehaviorKind (from ErrorModel) «enumeration» .. 153
18.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototype» .. 153
18.2.5 ErrorModelType (from ErrorModel) «atpType» ... 154
18.2.6 FailureOutPort (from ErrorModel) ... 156
18.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype» ... 156
18.2.8 FaultFailurePropagationLink (from ErrorModel) ... 157
18.2.9 FaultInPort (from ErrorModel) ... 157
18.2.10 InternalFaultPrototype (from ErrorModel) ... 158
18.2.11 ProcessFaultPrototype (from ErrorModel) .. 158

19 SafetyConstraints ... 159

19.1 Overview ... 159

19.2 Element Descriptions .. 159
19.2.1 ASILKind (from SafetyConstraints) «enumeration» .. 159
19.2.2 FaultFailure (from SafetyConstraints) ... 160
19.2.3 QuantitativeSafetyConstraint (from SafetyConstraints) .. 160
19.2.4 SafetyConstraint (from SafetyConstraints) ... 161

20 SafetyRequirement ... 162

EAST-ADL Domain Model Specification version V2.1.12

11 (244)

20.1 Overview ... 162

20.2 Element Descriptions .. 162
20.2.1 FunctionalSafetyConcept (from SafetyRequirement) ... 162
20.2.2 SafetyGoal (from SafetyRequirement) .. 163
20.2.3 TechnicalSafetyConcept (from SafetyRequirement) .. 163

21 SafetyCase ... 165

21.1 Overview ... 165

21.2 Element Descriptions .. 165
21.2.1 Claim (from SafetyCase) .. 165
21.2.2 Ground (from SafetyCase) .. 166
21.2.3 LifecycleStageKind (from SafetyCase) «enumeration» .. 167
21.2.4 SafetyCase (from SafetyCase) ... 167
21.2.5 Warrant (from SafetyCase) ... 168

Part VIII Generic Constraints .. 170

22 GenericConstraints ... 171

22.1 Overview ... 171

22.2 Element Descriptions .. 171
22.2.1 GenericConstraint (from GenericConstraints) .. 171
22.2.2 GenericConstraintKind (from GenericConstraints) «enumeration» .. 172
22.2.3 GenericConstraintSet (from GenericConstraints) ... 174
22.2.4 TakeRateConstraint (from GenericConstraints) ... 174

Part IX Infrastructure .. 175

23 Datatypes .. 176

23.1 Overview ... 176

23.2 Element Descriptions .. 176
23.2.1 ArrayDatatype (from Datatypes) ... 176
23.2.2 CompositeDatatype (from Datatypes) .. 177
23.2.3 EABoolean (from Datatypes) .. 177
23.2.4 EADatatype (from Datatypes) {abstract} «atpType» .. 178
23.2.5 EADatatypePrototype (from Datatypes) «atpPrototype» .. 178
23.2.6 EANumerical (from Datatypes) ... 178
23.2.7 EAString (from Datatypes) .. 179
23.2.8 Enumeration (from Datatypes) .. 179
23.2.9 EnumerationLiteral (from Datatypes) .. 180
23.2.10 Quantity (from Datatypes) ... 180
23.2.11 RangeableValueType (from Datatypes) ... 181
23.2.12 Unit (from Datatypes) .. 182

24 Values ... 183

24.1 Overview ... 183

24.2 Element Descriptions .. 183
24.2.1 EAArrayValue (from Values) ... 183
24.2.2 EABooleanValue (from Values) .. 183
24.2.3 EACompositeValue (from Values) .. 184
24.2.4 EAEnumerationValue (from Values) ... 184
24.2.5 EAExpression (from Values) «atpMixedString» .. 185
24.2.6 EANumericalValue (from Values) ... 185
24.2.7 EAStringValue (from Values) .. 185

EAST-ADL Domain Model Specification version V2.1.12

12 (244)

24.2.8 EAValue (from Values) {abstract} «atpPrototype» .. 186

25 Elements ... 187

25.1 Overview ... 187

25.2 Element Descriptions .. 188
25.2.1 Comment (from Elements) .. 188
25.2.2 Context (from Elements) {abstract}... 189
25.2.3 EAConnector (from Elements) {abstract}.. 189
25.2.4 EAElement (from Elements) {abstract} ... 189
25.2.5 EAPackage (from Elements) .. 190
25.2.6 EAPackageableElement (from Elements) {abstract} .. 190
25.2.7 EAPort (from Elements) {abstract} .. 191
25.2.8 EAPrototype (from Elements) {abstract} ... 191
25.2.9 EAType (from Elements) {abstract} .. 191
25.2.10 EAXML (from Elements) ... 192
25.2.11 Identifiable (from Elements) {abstract} .. 192
25.2.12 Rationale (from Elements) .. 193
25.2.13 Realization (from Elements) .. 193
25.2.14 Referrable (from Elements) {abstract} .. 194
25.2.15 Relationship (from Elements) {abstract} ... 194
25.2.16 TraceableSpecification (from Elements) {abstract}... 195

26 UserAttributes ... 196

26.1 Overview ... 196

26.2 Element Descriptions .. 197
26.2.1 UserAttributeDefinition (from UserAttributes) ... 197
26.2.2 UserAttributedElement (from UserAttributes) ... 198
26.2.3 UserElementType (from UserAttributes)... 199

Part X Annexes ... 201

27 Annex A: Notation ... 202

28 Annex B: Needs .. 206

28.1 Overview ... 206

28.2 Element Descriptions .. 206
28.2.1 ArchitecturalDescription (from Needs) .. 206
28.2.2 ArchitecturalModel (from Needs) .. 207
28.2.3 Architecture (from Needs) ... 207
28.2.4 BusinessOpportunity (from Needs)... 207
28.2.5 Concept (from Needs) {abstract} .. 208
28.2.6 Mission (from Needs) .. 208
28.2.7 ProblemStatement (from Needs) .. 209
28.2.8 ProductPositioning (from Needs) .. 209
28.2.9 Stakeholder (from Needs) ... 210
28.2.10 StakeholderNeed (from Needs) .. 211
28.2.11 VehicleSystem (from Needs) .. 211

29 Annex C: BehaviorDescription .. 212

30 BehaviorDescription .. 213

30.1 Overview ... 213

30.2 Element Descriptions .. 215
30.2.1 BehaviorConstraintBindingAttribute (from BehaviorDescription) .. 215

EAST-ADL Domain Model Specification version V2.1.12

13 (244)

30.2.2 BehaviorConstraintBindingEvent (from BehaviorDescription) .. 216
30.2.3 BehaviorConstraintInternalBinding (from BehaviorDescription) {abstract} 216
30.2.4 BehaviorConstraintParameter (from BehaviorDescription) {abstract} 217
30.2.5 BehaviorConstraintPrototype (from BehaviorDescription) «atpPrototype» 218
30.2.6 BehaviorConstraintTargetBinding (from BehaviorDescription) ... 218
30.2.7 BehaviorConstraintType (from BehaviorDescription) «atpType» ... 219

31 AttributeQuantificationConstraint .. 221

31.1 Overview ... 221

31.2 Element Descriptions .. 221
31.2.1 Attribute (from AttributeQuantificationConstraint) «atpPrototype» .. 221
31.2.2 AttributeQuantificationConstraint (from AttributeQuantificationConstraint) 222
31.2.3 BehaviorAttributeBinding (from AttributeQuantificationConstraint) ... 222
31.2.4 LogicalEvent (from AttributeQuantificationConstraint) .. 223
31.2.5 Quantification (from AttributeQuantificationConstraint) .. 223

32 ComputationConstraint ... 225

32.1 Overview ... 225

32.2 Element Descriptions .. 225
32.2.1 ComputationConstraint (from ComputationConstraint) ... 225
32.2.2 LogicalPath (from ComputationConstraint) ... 226
32.2.3 LogicalTransformation (from ComputationConstraint) .. 227
32.2.4 TransformationOccurrence (from ComputationConstraint) .. 228

33 TemporalConstraint .. 230

33.1 Overview ... 230

33.2 Element Descriptions .. 231
33.2.1 LogicalTimeCondition (from TemporalConstraint) .. 232
33.2.2 State (from TemporalConstraint) .. 232
33.2.3 StateEvent (from TemporalConstraint) ... 233
33.2.4 SynchronousTransition (from TemporalConstraint) .. 233
33.2.5 TemporalConstraint (from TemporalConstraint) ... 234
33.2.6 Transition (from TemporalConstraint) ... 235
33.2.7 TransitionEvent (from TemporalConstraint) .. 236

34 Index ... 237

EAST-ADL Domain Model Specification version V2.1.12

14 (244)

Part I Introduction

The purpose of the EAST-ADL language is to capture automotive electrical and electronic systems
with sufficient detail to allow modeling for documentation, design, analysis, and synthesis. These
activities require system descriptions on several abstraction levels, from top level features down to
tasks and communication frames. Moreover, the activities also involve the expression of non-
structural aspects of the electrical/electronic system under development, e.g., requirements,
behavior, and verification and validation.

By hosting all aspects of the automotive electrical/electronic system with this domain model, the
relations between them can be managed more efficiently. The different abstraction levels give a
modeling context and a view of systems, functions, and features on different levels of detail, and
with a clear separation of concerns.

This language specification describes how information needed for relevant analysis and synthesis
can be captured but does not define how the analysis or synthesis should be done. This approach
was chosen in order to allow company-specific processes while harmonizing the design artifacts to
allow information exchange between tools and organizations. In supplementary material we
provide a methodology description, where the language concepts are used in the context of a
generic process.

The purpose of the domain model is to specify the concepts of the domain. The domain model of
EAST-ADL also acts as a metamodel, which uses concepts from the AUTOSAR metamodel. This
means that the EAST-ADL metamodel (i.e., the EAST-ADL domain model) can be imported into
the AUTOSAR metamodel, where the references from EAST-ADL to AUTOSAR are restored. The
current version of the corresponding AUTOSAR metamodel is 4.0.

To import EAST-ADL into an AUTOSAR metamodel:

1) Open the AUTOSAR metamodel in Enterprise Architect.

2) Import the EAST-ADL metamodel as an XMI-file.

Figure 1. This diagram shows dependencies between packages in the domain model. All packages
except the AUTOSAR package depend on the EAST-ADL Infrastructure package. The AUTOSAR
package contains some concepts that EAST-ADL elements in the Infrastructure and Structure
packages depend on.

EAST-ADL Domain Model Specification version V2.1.12

15 (244)

Figure 2. Packages in the EAST-ADL domain model.

EAST-ADL Domain Model Specification version V2.1.12

16 (244)

1 Language Formalism

1.1 Levels of Formalism

The EAST-ADL domain model is specified using a combination of UML modeling techniques and
precise natural language to balance rigor and understandability.

1.2 Specification Structure

The EAST-ADL domain model specification is organized into different parts:

Part I includes a general introduction to the specification.

Parts IIïIX include chapters that are organized according to the EAST-ADL domain model
subpackages.

Part X consists of annexes. This is where the notation for each element of the language is found.

Each part of the specification contains one or more chapters. Each chapter has the same
structure: first an Overview section and then am Element Descriptions section.

The EAST-ADL specification has an Annex A proposing a possible notation for some of the
metaclasses. Subsequent annexes contain preliminary extensions to the language that add
modelling concepts that are not part of the basic content. It is likely that these extensions will be
refined and subsequently integrated into the regular extensions in future releases of EAST-ADL.

1.2.1 Overview

This section of a chapter provides an overview of the EAST-ADL domain model constructs defined
in each subpackage, which are usually described by one or more class diagrams that show the
relationships between the elements of the package and, where applicable, relationships to other
packages.

Elements from AUTOSAR are shown in the diagrams as classes with a pink background.

1.2.2 Element Descriptions

The Element Description specifies the individual elements within each EAST-ADL subpackage. All
elements in the subpackage are ordered alphabetically and each element has the following
specification information:

<Element (from subpackage)>

The element description starts with a header with the name of the element and the subpackage
that it belongs to. If the element is abstract, ñ{abstract}ò is shown in the header. If the element has
a stereotype attached, this is shown within guillemets («...»).

Generalizations

This paragraph lists those domain model constructs that the current element specializes (inherits
from).

Description

This paragraph provides a description of the current element and the direct context of this element
(related domain model constructs).

EAST-ADL Domain Model Specification version V2.1.12

17 (244)

Attributes

This paragraph specifies the elementôs attributes with names and types. The attribute has a
unique name within the element. Each attribute has a type which is either a primitive or refers to
an enumeration.

In addition, each attribute is supplied with a cardinality; EAST-ADL uses only cardinalities [0..1] for
optional attributes and [1] for mandatory attributes.

Associations

This paragraph specifies the elementôs rolenames for related concepts, as referred to by this
element by an association. The documentation of the rolename may include the stereotype
«isOfType», which is used to specify that the related element types this element.

Dependencies

This paragraph specifies the elementôs rolenames for related concepts, as referred to by this
element by a dependency. The dependencies are always stereotyped «instanceRef» which is the
pattern used by AUTOSAR to identify that a more detailed model of associations rather than this
dependency is necessary to identify the precise context of the target element.

Constraints

This paragraph specifies the elementôs constraints for verification of the correct use of the
element. The constraints are given in natural language.

Semantics

This paragraph specifies the element's meaning in a concise form and defines how it may be used
and specialized by other elements within the language. Definitions in this paragraph are not
tailored to understandability (as in the "Description" paragraph) but precision and succinctness.

EAST-ADL Domain Model Specification version V2.1.12

18 (244)

2 Abbreviations

AADL Architecture Analysis and Design Language

ADL Architecture Description Language

ATESST Advancing Traffic Efficiency and Safety through
Software Technology

AUTOSAR AUTomotive Open System ARchitecture

EAST-EEA Electronics Architecture and Software Technology -
Embedded Electronic Architecture

ECU Electronic Control Unit

FAA Functional Analysis Architecture

FDA Functional Design Architecture

HDA Hardware Design Architecture

RIF Requirement Interchange Format

SysML System Modeling Language

TADL Timing Augmented Description Language

TIMMO Timing Model

UML Unified Modeling Language

V&V Verification & Validation

XMI XML Metadata Interchange

XML eXtensible Mark-up Language

EAST-ADL Domain Model Specification version V2.1.12

19 (244)

Part II Structural Constructs

This part of the specification defines the structural constructs used in EAST-ADL. The structural
view of a model focuses on the static structure of the instances of the system being modeled and
their static relationships. This includes the internal structure of such instances and their external
interfaces through which they can be connected to communicate with one another, by exchanging
data or sending messages.

EAST-ADL abstraction layers are introduced to allow reasoning about the features on several
levels of abstraction. Note, however, that the abstraction levels are only conceptual; the modeling
elements are organized according to the artifacts, which may span more than one of these layers.
Where applicable, entities on different abstraction levels are related with a realization association
to allow traceability analysis. Traceability can also be deduced from the requirements structure.

The EAST-ADL abstraction layers with their corresponding artifacts are:

- Vehicle Level, with feature models describing decompositions of system characteristics
organized as a software product line.

- Analysis Level, including the Functional Analysis Architecture (FAA). The FAA is built from an
abstract functional definition of the system to capture analysis support of what the system shall do,
ensuring relation with features from the Vehicle layer view. There is an n-to-m mapping between
VehicleFeature and Feature entities and FAA entities (i.e., one or several functions may realize
one or several features).

- Design Level, including the Functional Design Architecture (FDA). The FDA represents a
decomposition of functionalities denoted in the FAA, including behavioral description but excluding
software implementation constraints. The decomposition has the purpose of making it possible to
meet constraints regarding non-functional properties such as allocation, efficiency, reuse, or
supplier concerns. Again, there are n-to-m mappings by Realization relationships between entities
in the FDA and entities in the FAA. Non-transparent infrastructure functionality of the AUTOSAR
Basic SW Architecture, such as mode changes and error handling, are also represented at the
Design Level in terms of BasicSoftwareFunctions.

- The Hardware Architecture models Electronic Control Units (ECUs), communication links,
sensors and actuators and their connections. The Hardware Architecture is also considered at the
Analysis Level as FunctionalDevices and at the Design Level as HardwareFunctions because
models of sensors, actuators, and early assumptions of hardware may be needed either for the
Functional Analysis Architecture or the Functional Design Architecture.

- Implementation Level refers to the System element in an AUTOSAR model.

The Environment contains Environment functions, which are encapsulations of plant models, i.e.
models of the behavior of the vehicle and its non-electronic systems. Environment models are
needed for validation and verification, from early analysis models to the implemented embedded
system. Note that no specific EnvironmentFunction exists as such in the language, but
DesignFunctions or AnalysisFunctions are used. However to connect such functions to the rest of
the systems, special connectors are used, ClampConnectors which can traverse hierarchal
containments.

EAST-ADL Domain Model Specification version V2.1.12

20 (244)

3 SystemModeling

3.1 Overview

The SystemModel is the top-level container of an EAST-ADL model. It represents the
electrical/electronic system in a vehicle and concepts related to the various abstraction levels.

For the design of electrical/electronic systems of arbitrary size and complexity, the possibility of
hierarchical structuring of the instances is provided, so these models contain further elements in a
hierarchy. Relations between these elements across the boundaries of the abstraction levels are
contained in a SystemModel. This is possible because the SystemModel is a Context, and is thus
able to contain relations.

Figure 3. Diagram for SystemModel. Note how the ImplementationLevel refers to the System from
the AUTOSAR SystemTemplate.

3.2 Element Descriptions

3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

21 (244)

Description
The AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract
functional definition. It includes the functional analysis architecture (FAA), which represents the
functional structure.

Attributes
No additional attributes

Associations

¶ functionalAnalysisArchitecture : AnalysisFunctionPrototype [0..1] {composite}

The included functionalAnalysisArchitecture, this prototype shall be typed by an
AnalysisFunctionType modeling the FunctionalAnalysisArchitecture. It is an abstract
functional representation of the electrical/electronic system and realizes the
VehicleFeatures.

Constraints
No additional constraints

Semantics
AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract functional
definition. It defines the logical functionality and a logical decomposition of functionality down to
the appropriate granularity.

3.2.2 DesignLevel (from SystemModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

Description
The DesignLevel represents the vehicle electrical/electronic system on the design abstraction
level. It includes primarily the Functional Design Architecture (FDA), and the
HardwareDesignArchitecture (HDA).

FDA represents a top level Function. It is supposed to implement all the functionalities of a vehicle,
as specified by a FAA or a Vehicle level (if no FAA has been defined during the process).

The design level in EAST-ADL includes the design architecture containing the functional
specification and hardware architecture of the vehicle electrical/electronic system. The design
architecture includes the FDA representing a decomposition of functionalities analyzed on the
analysis level. The decomposition has the purpose of making it possible to meet constraints
regarding non-functional properties such as allocation, efficiency, reuse, or supplier concerns.
There is an n-to-m mapping between entities of the design level and the ones on the analysis
level.

Non-transparent infrastructure functionality such as mode changes and error handling are also
represented at the design level, such that their impact on applications' behaviors can be
estimated.

The FDA parts are typed by DesignFunctionTypes and e.g. LocalDeviceManagers. The view of the
HardwareArchitecture facilitates the realization of LocalDeviceManager as sensor/actuator HW
elements.

The HDA is the hardware design from a system perspective. The HDA has two purposes:

1) It shows the physical entities and how they are connected.

2) It is an allocation target for the Functions of the FDA.

The HDA represents the hardware architecture of the embedded system. Its contained HW
elements represent the physical aspects of the hardware entities and how they are connected.

file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

22 (244)

HardwareFunctionTypes associated to HW components represent the logical behavior of the
contained HW elements.

Attributes
No additional attributes

Associations

¶ functionalDesignArchitecture : DesignFunctionPrototype [0..1] {composite}

The included FDA. This includes functional design, modeled by DesignFunctions;
middleware functionality abstraction, to be modeled by BasicSoftwareFunctionTypes in the
implementation level; and logical hardware, modeled by HardwareFunctionTypes.

The FDA represents the elementary design function that is used to describe the leaves of
the functional hierarchy. The composition of these leaves makes up the implementation
behavior of the entire functional hierarchy.

¶ allocation : Allocation [*] {composite}

¶ hardwareDesignArchitecture : HardwareComponentPrototype [0..1] {composite}

The included HDA models the resources to which the functional design architecture parts
may be allocated.

Constraints
No additional constraints

Semantics
The DesignLevel is the representation of the vehicle electrical/electronic system on the design
abstraction level. It corresponds to the design of logical functions and boundaries extended in
regards to resource commitment.

3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

Description
The ImplementationLevel represents the software architecture and the hardware architecture of
the electrical/electronic system in the vehicle. The ImplementationLevel is defined by the
AUTOSAR SystemArchitecture and SoftwareArchitecture. For example, functions of the FDA will
be realized by AUTOSAR SW-Components in the ImplementationLevel. Traceability is supported
from implementation level elements (AUTOSAR) to upper level elements by Realization
relationships.

Attributes
No additional attributes

Associations

¶ autosarSystem : System [0..1]

The AUTOSAR System from the SystemTemplate represents the AUTOSAR
implementation of the SystemModel.

Constraints
No additional constraints

Semantics
The ImplementationLevel is the representation of the vehicle electrical/electronic system on the
implementation abstraction level. It corresponds to the system implementation in Software and
Hardware.

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Allocation
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23System

EAST-ADL Domain Model Specification version V2.1.12

23 (244)

3.2.4 SystemModel (from SystemModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

Description
The SystemModel is used to organize models/architectures according to their abstraction level; it
can also hold with relationships between the different levels.

Attributes
No additional attributes

Associations

¶ vehicleLevel : VehicleLevel [0..1] {composite}

The included vehicle abstraction level.

¶ designLevel : DesignLevel [0..1] {composite}

The included design abstraction level.

¶ analysisLevel : AnalysisLevel [0..1] {composite}

The included analysis abstraction level.

¶ implementationLevel : ImplementationLevel [0..1] {composite}

The included implementation abstraction level.

Constraints
No additional constraints

Semantics
The SystemModel represents the electrical/electronic system of the vehicle, and concepts related
to the various abstraction levels.

3.2.5 VehicleLevel (from SystemModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

Description
The VehicleLevel represents the vehicle content from an external perspective through an arbitrary
set of feature models. These contain VehicleFeatures that are organized to reflect the vehicle
configuration and that have associated requirements, use cases, etc. for its definition.

Attributes
No additional attributes

Associations

¶ technicalFeatureModel : FeatureModel [*] {composite}

This association identifies the core technical feature model of the complete system. This
has a special role as it defines all the features of the complete system on vehicle level. In
addition to this feature model, there may be one or more so-called product feature models
(cf. association productFeatureModel in meta-class Variability in the variability extension).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on vehicle level, which provide an orthogonal view on the core technical
feature model tailored to a particular purpose, for example an end-customer feature model.
However, there may be other use cases for feature models on vehicle level. More detailed

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23VehicleLevel
file:///C:/Volvo/MAENAD/index.html%23DesignLevel
file:///C:/Volvo/MAENAD/index.html%23AnalysisLevel
file:///C:/Volvo/MAENAD/index.html%23ImplementationLevel
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FeatureModel

EAST-ADL Domain Model Specification version V2.1.12

24 (244)

treatment of this is beyond the scope of the language specification and can be found in the
accompanying usage and methodology documentations.

Constraints
[1] All contained feature models are FeatureModels that only contain VehicleFeatures.

Semantics
The VehicleLevel represents the vehicle content through solution-independent features.

EAST-ADL Domain Model Specification version V2.1.12

25 (244)

4 FeatureModeling

4.1 Overview

This package describes the basic feature modeling that is employed on the vehicle level as well as
on the artifact levels, i.e., on AnalysisLevel and below. Details of feature modeling that are specific
to the vehicle level are factored out and documented separately in the package
VehicleFeatureModeling.

A feature in this sense is a characteristic or trait that individual variants of either the complete
system (in case of feature models on VehicleLevel) or an individual Analysis- or
DesignFunctionType (in case of public feature models of FunctionTypes) may or may not possess.
By listing features that are common to all variants as well as those that apply only to some
variants, a feature model defines the complete system's / FunctionType's commonality and
variability. In addition to this use in the context of variability management, features can also be
used to represent coarse-grained requirements, in order to define a high-level break-down of the
system's main functionality. Therefore, feature modeling is not only useful for variability
management but also when modeling completely invariant systems. More details are given below
in the description of the meta-classes Feature and FeatureModel and in package
VehicleFeatureModeling.

Figure 4. Diagram for FeatureModeling.

4.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

26 (244)

4.2.1 BindingTime (from FeatureModeling)

Generalizations

¶ EAElement (from Elements)

Description
The motivation for attributing features and variable elements with binding times is that binding
times encapsulate important information about the variability under view.

Variability that must be bound (determined, decided) very early in the system development may
not be visible in one single feature model but only in comparison with different feature models in
the context of multi-level feature trees; late bound variability is variability providing the driver with
choices for current equipment configuration.

Binding times are important because they describe if the variability must be decided during system
development or if the variability is determined by a customer or if the variability itself is part of the
product features that are sold to the customer. Possible binding times are:

- SystemDesignTime

- CodeGenerationTime

- PreCompileTime

- LinkTime

- PostBuild

- Runtime

Note that a binding time is never a particular point in time such as April 2nd, 2011, but always a
certain stage in the overall development, production and shipment process as represented by the
above values.

Each feature must have a binding time (association requiredBindingTime) and may have one
further binding time (association actualBindingTime).

The required binding time describes the binding time that the feature is intended to have. But due
to technical conditions it may occur that the actually realized binding time of the feature differs
from the originally intended binding time. In this case one has to provide information about the
actual binding time. In the rationale it must be described by what the required binding time is
motivated by and what the reasons are for a (different) actual binding time.

Attributes

¶ kind : BindingTimeKind = systemDesignTime [1]

The kind of the binding time, see enumeration BindingTimeKind for specification of binding
times.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.2 BindingTimeKind (from FeatureModeling) «enumeration»

Generalizations
None

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

27 (244)

Description
BindingTimeKind represents the set of possible binding times.

Enumeration Literals

¶ codeGenerationTime

Variability will be bound during code generation.

From AUTOSAR:

* Coding by hand, based on requirements document.

* Tool based code generation, e.g. from a model.

* The model may contain variants.

* Only code for the selected variant(s) is actually generated.

¶ linkTime

Variability will be bound during linking.

From AUTOSAR:

Configure what is included in object code, and what is omitted

Based on which variant(s) are selected

E.g. for modules that are delivered as object code (as opposed to those that are delivered
as source code)

¶ postBuild

Variability will be bound at certain occasions after shipment, for example when the vehicle
is in a workshop.

¶ preCompileTime

Variability will be bound during or immediately prior to code compilation.

From AUTOSAR:

This is typically the C-Preprocessor. Exclude parts of the code from the compilation
process, e.g., because they are not required for the selected variant, because they are
incompatible with the selected variant, because they require resources that are not present
in the selected variant. Object code is only generated for the selected variant(s). The code
that is excluded at this stage will not be available at later stages.

¶ runtime

Variability will be bound by the customer after shipment by way of vehicle configuration.

Variability with such a late binding time can also be seen as a special functionality of the
system which is not documented as variability at all. However, it is sometimes
advantageous to represent such cases as variability in order to be able to seamlessly
include them in the overall variability management activities.

¶ systemDesignTime

Variability will be bound during development of the electrical/electronic system.

From AUTOSAR:

* Designing the VFB.

* Software Component types (portinterfaces).

* SWC Prototypes and the Connections between SWCprototypes.

EAST-ADL Domain Model Specification version V2.1.12

28 (244)

* Designing the Topology

* ECUs and interconnecting Networks

* Designing the Communication Matrix and Data Mapping

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.3 Feature (from FeatureModeling) «atpStructureElement»

Generalizations

¶ FeatureTreeNode (from FeatureModeling)

Description
A Feature represents a characteristic or trait of some object of consideration. The actual object of
consideration depends on the particular purpose of the feature's containing feature model.

Example 1: The core technical feature model on vehicle level defines the technical properties of
the complete system, i.e., vehicle. So its object of consideration is the vehicle as a whole and
therefore its features represent characteristics or traits of the vehicle as a whole.

Example 2: The public feature model of some function F in the FDA defines the features of this
particular software function. So its object of consideration is function F and therefore its features
represent characteristics or traits of this function F.

Attributes

¶ cardinality : String [1]

Specifies the Feature's cardinality stating how often this feature may be selected during
configuration.

Typical cardinalities include:

- A cardinality of 0..1 means that this Feature is optional, i.e. it can be selected or
deselected during configuration.

- A cardinality of 1 means that this Feature is mandatory, i.e. it cannot be deselected but is
always present in a configuration if its parent feature is present; mandatory root features
are present in all configurations.

- A cardinality of 0 means that this Feature is abstract, i.e. it cannot be selected and is
never present in any configuration. This can be used to completely disable a feature and, in
the case of non-leaf features, the whole subtree below it, for example to tentatively remove
a subtree without (yet) deleting it completely from the model.

- A cardinality with an upper bound greater than 1 or * (infinite), such as [0..2], [1..*], or
[2..8], means that this Feature is cloned, i.e. it may be selected more than once during
configuration. If such a feature is actually selected more than once in a particular
configuration, then its entire subtree may be configured differently for each selection.
Cloned features are in fact instantiated during configuration and each instance is provided
with a name.

Note that using cloned features, i.e. features with cardinality having an upper bound
greater than 1, has far-reaching consequences for how Features are applied. If this is not
desired/needed in a certain project, cardinalities >1 can be prohibited by specifying an

file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode

EAST-ADL Domain Model Specification version V2.1.12

29 (244)

appropriate complianceLevel in the FeatureModel. As a general guideline, cloned features
should be avoided as far as possible. In some situations, however, they can prove
extremely useful and elegant. For example, consider the feature model of a wiper system;
in order to allow for an extremely flexible configuration of the interval modes, a single
parameterized cloned feature can be used: "IntervalMode[2..*] : Float". With this single
cloned feature, any number of intervals can be created (but at least 2) and for each interval
a precise duration in sec can be configured; without cloned features, this degree of
flexibility could not easily be achieved.

Associations

¶ actualBindingTime : BindingTime [1] {composite}

The actual binding time, independent of the required binding time.

Due to technical conditions it may occur that the actually realized binding time of the
feature/variation point differs from the originally intended binding time. In this case one has
to provide information about the actual binding time.

In the rationales it must be described what the reasons are for a (different) actual binding
time.

¶ requiredBindingTime : BindingTime [0..1] {composite}

The required binding time could possibly deviate from the actual binding time.

The attribute reflects the intended binding time, and actual binding time can be later
adapted to this required binding time, if surrounding constraints allow a change.

Each feature/variation point must have a required binding time attribute.

¶ childNode : FeatureTreeNode [*] {composite}

Features may have any number of Features or FeatureGroups as their children or none at
all.

¶ featureParameter : EADatatype [0..1]

For parameterized features, this specifies the type of the feature's parameter.

Constraints
No additional constraints

Semantics
Feature is a (non)functional characteristic, constraint or property that can be present or not in a
(vehicle) product line.

4.2.4 FeatureConstraint (from FeatureModeling)

Generalizations

¶ EAElement (from Elements)

Description
Captures a constraint on the containing feature model's configuration which is too complex to be
expressed by way of a FeatureLink. In general, all constraints that can be expressed by a
FeatureLink can also be expressed by a FeatureConstraint, but not vice versa.

Attributes

¶ criterion : String [1]

The actual constraint. This is a logic expression in VSL like the criterion of a
ConfigurationDecision. For the constraint to be met this expression always has to evaluate
to true.

file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

30 (244)

For example, to express a mutual exclusion of two features, use the expression "! (Radar &
RainSensor)". However, note that this particular constraint could also be formulated as a
FeatureLink with type "excludes".

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.5 FeatureGroup (from FeatureModeling)

Generalizations

¶ FeatureTreeNode (from FeatureModeling)

Description
FeatureGroup is a specialization of the FeatureTreeNode, enabling grouping of several Features.

Attributes

¶ cardinality : String [1]

The cardinality of the FeatureGroup, specifies how the grouped features, in featureGroup,
can be combined. For example, a FeatureGroup owning the two Features A and B, and
with a cardinality of [1], means that A and B are alternatives, but only one of them can be
chosen. Mandatory features among the child features count as 1 and for cloned features all
instances created in the configuration count.

Associations

¶ childFeature : Feature [2..*] {composite}

FeatureGroups may only have Features as their children and must always have at least
two children.

It is perfectly legal to have child features in a feature group that are mandatory or cloned.
However, except for special use cases, this is discouraged and therefore all child features
of a FeatureGroup should usually be optional, i.e. have cardinality [0..1].

Constraints
No additional constraints

Semantics
FeatureGroup is a grouping entity for sibling Features to reflect variability for a set of Features.

4.2.6 FeatureLink (from FeatureModeling)

Generalizations

¶ Relationship (from Elements)

Description
A FeatureLink resembles a Relationship between two Features referred to as 'start' and 'end'
feature (such as "feature S requires feature E" or "S excludes E").

The type of the FeatureLink specifies the precise semantics of the relationship. There are several
predefined types, for example "needs" states that S requires E. In addition, user-defined types are
allowed as well. For user-defined types, attribute 'customType' provides a unique identifier of the
custom link type and attribute 'isBidirectional' states whether the link is uni- or bidirectional.

file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode
file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Relationship

EAST-ADL Domain Model Specification version V2.1.12

31 (244)

FeatureLinks are similar to FeatureConstraints but much more restricted. The rationale for having
FeatureLinks in addition to FeatureConstraints is that in many cases FeatureLinks are sufficient
and tools can deal with them more easily and appropriately (e.g. they can easily be presented
visually as arrows in a diagram).

Attributes

¶ customType : String [1]

The custom type of this FeatureLink identified by a String value. This attribute's value is
ignored if attribute 'kind' is set to some other value than 'custom'.

Each company or project can decide to use additional link types by defining unique key-
words for them. In cases where FeatureModels are shared with third parties (other
departments, companies, etc.) a globally unique type string must be used. Follow the
instructions for finding globally unique keys for user attributes (cf. documentation of
metaclass UserAttributeValue).

¶ isBidirectional : Boolean [0..1]

Tells whether the FeatureLink is bidirectional or unidirectional. For predefined kinds, such
as "needs", "mandatoryAlternative", etc., this attribute will be ignored and the kind
determines whether the link is bidirectional or not (as defined in the documentation of
attribute 'type', below). For custom kinds, this attribute may be provided to explicitly state
the link's direction. If this attribute is not provided in case of a custom link type, then the
link is assumed to be unidirectional.

¶ kind : VariabilityDependencyKind [1]

The kind determines the precise semantics of the relation between the FeatureLink's start
and end feature. There are 5 predefined kinds as defined by enumeration
VariabilityDependencyKind and in the case of kind 'custom' the attribute customType can
be used to define a custom feature link type.

Associations

¶ start : Feature [1]

The source [supplier] Feature of the relationship.

¶ end : Feature [1]

The target [client] Feature of the dependency.

Constraints
[1] The start and end Features of a FeatureLink must be contained in the FeatureModel that
contains the FeatureLink.

Semantics
The FeatureLink is a relationship between Features that may constrain the selection of Features
involved in the relationship.

4.2.7 FeatureModel (from FeatureModeling) «atpStructureElement»

Generalizations

¶ Context (from Elements)

Description
FeatureModel denotes a model owning Features. The FeatureModel can be used to describe
variability and commonality of a specified electrical/electronic system at any abstraction level in the
SystemModel.

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

32 (244)

The FeatureModel can be used either to describe the variability within a particular Function or to
describe the overall variability of a vehicle (cf. VehicleLevel). The FeatureModel describing internal
variability of a FunctionType refers to the VehicleLevel by a «realizes» link (informative).

Note, however, that a FeatureModel per definition does not always have to define variability. If a
feature model contains only mandatory features, then its purpose is completely unrelated to
variability. The features in such a FeatureModel could serve, for example, as invariant "coarse-
grained requirements". The most important example is the core technical feature model on vehicle
level which is also used for SystemModels that do not contain any variability at all. However, most
uses of feature models in EAST-ADL are primarily motivated by variability definition and
management.

A public, local FeatureModel of an artifact element realizes a VehicleFeature of the VehicleLevel.

Attributes
No additional attributes

Associations

¶ rootFeature : Feature [*] {composite}

The root Features owned by the FeatureModel. Note that only root Features are directly
contained in the model; non-root Features are contained in their parent Feature or parent
FeatureGroup.

¶ featureLink : FeatureLink [*] {composite}

The FeatureLinks owned by the FeatureModel.

¶ featureConstraint : FeatureConstraint [*] {composite}

FeatureConstraints owned by the FeatureModel.

Constraints
No additional constraints

Semantics
The FeatureModel has no specific semantics. Further subclasses of FeatureModel will add
semantics appropriate to the concept they represent.

4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}

Generalizations

¶ Context (from Elements)

Description
The abstract base class for all nodes in a feature tree.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
FeatureTreeNode has no specific semantics. Further subclasses of FeatureTreeNode will add
semantics appropriate to the concept they represent.

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23FeatureLink
file:///C:/Volvo/MAENAD/index.html%23FeatureConstraint
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

33 (244)

4.2.9 VariabilityDependencyKind (from FeatureModeling) «enumeration»

Generalizations
None

Description
This enumeration encapsulates the available types of constraints that can be applied to a
FeatureLink or VariationGroup (the latter is applicable only if the variability extension is used).

Enumeration Literals

¶ custom

When used in a FeatureLink: the attribute customType in the FeatureLink defines the
custom feature link type as explained there.

When used in a VariationGroup: this kind states that the dependency between the
elements denoted by association variableElement of the VariationGroup will be defined by
a logical expression in attribute 'constraint' of the VariationGroup.

¶ impedes

Weak from of "excludes".

When used in a FeatureLink: the FeatureLink's start feature S and its end feature E must
usually(!) not be selected in a single configuration. You can select S together with E but
you should have a good reason to do so. Always bidirectional.

When used in a VariationGroup: accordingly as above.

¶ mandatoryAlternative

When used in a FeatureLink: either the FeatureLink's start feature S or its end feature E
must be selected in any configuration: S xor E. Always bidirectional.

When used in a VariationGroup: this kind states that exactly(!) one element of the elements
denoted by association variableElement of the VariationGroup must be selected in any
valid final system configuration.

¶ needs

When used in a FeatureLink: if the FeatureLink's start feature S is selected, then also its
end feature E must be selected: not (S and not E). Always unidirectional.

When used in a VariationGroup: assuming the ordered association variableElement in
meta-class VariationGroup refers to elements VE1, VE2, ..., VEn, this kind states that VE1
requires (i.e. may not appear without) all other elements VE2, VE3, ..., VEn.

¶ optionalAlternative

When used in a FeatureLink: the FeatureLink's start feature S and end feature E are
incompatible and must never be both selected in a single configuration: not (S and E).
Always bidirectional.

When used in a VariationGroup: this kind states that at most(!) one element of the
elements denoted by association variableElement of the VariationGroup must be selected
in any valid final system configuration.

¶ suggests

Weak form of "needs".

When used in a FeatureLink: if the FeatureLink's start feature S is selected, then usually(!)
also its end feature E must be selected. You can select S without E but you should have a
good reason to do so. Always unidirectional.

EAST-ADL Domain Model Specification version V2.1.12

34 (244)

When used in a VariationGroup: accordingly as above.

Associations
No additional associations

Constraints
No additional constraints

Semantics
Predefined kinds of constraints that can be associated to a FeatureLink or VariationGroup.

EAST-ADL Domain Model Specification version V2.1.12

35 (244)

5 VehicleFeatureModeling

5.1 Overview

At the highest abstraction level, i.e., the Vehicle Level, EAST-ADL provides support for
classification and definition of product lines (the entire vehicle for a car maker or some of its sub-
systems for suppliers). The different possible configurations of the embedded electronic
architecture are captured on a high abstraction level in terms of features. A feature in this sense is
a characteristic or trait that individual variants of the vehicle may or may not have.

The specification of the features themselves, together with their forms of realization, the
dependencies between them, and the requirements to be respected for their realization is
performed at the Vehicle Level and it should be done independently of any product line. This
would be the basis for a consistent reuse of features in different product lines and projects. At this
level, a feature represents particular high-level requirements to be realized in all product line
members that respect some conditions, e.g., US cars with elegance trim and engine size higher
than 2.4.

Figure 5. Diagram for VehicleFeatureModeling.

5.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

36 (244)

5.2.1 DeviationAttributeSet (from VehicleFeatureModeling)

Generalizations

¶ EAElement (from Elements)

Description
DeviationAttributeSet specifies the set of rules of allowed deviations from the reference model in a
referring model. These rules are important, because they make sure that the different
FeatureModels, referring to one reference model, follow specific rules for deviation, so a later
integration into one FeatureModel may be possible.

Attributes

¶ allowChangeAttribute : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature attributes may be changed. Allowed
values: no, append, yes.

¶ allowChangeCardinality : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature cardinality (i.e. variability of the
VehicleFeature) may be changed. Allowed values: no, subset, yes.

¶ allowChangeDescription : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature description may be changed. Allowed
values: no, append, yes.

¶ allowChangeName : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature name may be changed. Allowed
values: no, append, yes.

¶ allowMove : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature may be moved to another place in the
feature diagram. Allowed values: no, subtree, yes.

¶ allowReduction : DeviationPermissionKind = YES [1]

This rule sets if the reference feature may have a child without a corresponding referring
feature among the children of the referring feature. Allowed values: no, subtree, yes.

¶ allowRefinement : DeviationPermissionKind = YES [1]

This rule sets whether and how adding may be done of a child feature (without a
corresponding feature in the reference model). Allowed values: no, yes.

¶ allowRegrouping : DeviationPermissionKind = YES [1]

This rule sets whether and how the immediate child features of the VehicleFeature are
allowed to be regrouped (i.e. creation or deletion of FeatureGroups below the respective
VehicleFeature). Allowed values: no, widen, yes.

¶ allowRemoval : DeviationPermissionKind = YES [1]

This rule sets if the feature in the referring model (compared to the reference model) may
be deleted. Allowed values: no, yes.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

37 (244)

Semantics
See description.

5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»

Generalizations
None

Description
The DeviationPermissionKind is an enumeration with enumeration literals defining possible values
for deviation attributes.

Enumeration Literals

¶ append

The name, description or other attribute may only be changed by appending text without
changing the original text. This kind is only applicable to deviation attributes
"allowChangeName", "allowChangeDescription" and "allowChangeAttribute".

¶ no

The deviation is not allowed.

¶ subset

The cardinality may only be changed such that the new cardinality is a subset of the
original cardinality. This kind is only applicable to deviation attribute
"allowChangeCardinality".

¶ subtree

In case of deviation attribute "allowMove": the parent of the VehicleFeature may be
changed, but the original parent must remain a predecessor (i.e. moving the
VehicleFeature itself is allowed but it may only be moved further down within the same
subtree).

In case of deviation attribute "allowReduction": the children of the VehicleFeature may be
moved elsewhere, but they must remain successors of the VehicleFeature (i.e. moving
them away is allowed but they may only be moved further down within the same subtree).

This kind is only applicable to deviation attributes "allowMove" and "allowReduction".

¶ widen

Feature groups may only be widened, i.e. it is only legal to add features into a feature
group that were not grouped before, but not to ungroup features. This kind is only
applicable to deviation attribute 'allowRegrouping'.

¶ yes

The deviation is allowed.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

EAST-ADL Domain Model Specification version V2.1.12

38 (244)

5.2.3 VehicleFeature (from VehicleFeatureModeling)

Generalizations

¶ Feature (from FeatureModeling)

Description
VehicleFeature represents a special kind of feature intended for use on Vehicle Level. The main
difference to features in general is that they provide support for the multi-level concept (via their
DeviationAttributeSet) and several additional attributes with meta-information specific to the
vehicle level viewpoint.

Attributes

¶ isCustomerVisible : Boolean [1]

This attribute states whether the VehicleFeature is customer visible (in contrast to a
VehicleFeature that is e.g. technically driven).

VehicleFeatures describe the system's characteristics on the level of the complete system
and on a high abstraction level but they can still have a strong technical viewpoint.
Therefore, they are usually not suitable for being directly presented to the end-customer.
There are two approaches to deal with this situation.

(1) The simple approach uses this attribute to denote those VehicleFeatures that are
suitable for immediate end-customer configuration: if this attribute is set to true, then the
feature will be directly presented to the end-customer for selection or de-selection; if set to
false, then the feature will be hidden from the end-customer and is thus reserved for
internal configuration.

(2) The more sophisticated approach is to define a dedicated product feature model to
capture the customer viewpoint (available in the variability extension) in addition to the
technical feature model on Vehicle Level and to provide a configuration decision model that
maps configurations of this end-customer-oriented product feature model to the core
technical feature model on Vehicle Level. This approach is much more flexible because the
customer-view on the product line's variability can be structured freely and independently
from the core technical feature model; furthermore, this approach can cope much better
with evolution because the end-customer-oriented feature model can be evolved
independently of the core technical feature model (and vice versa). When applying this
second approach, this attribute isCustomerVisible will no longer be used, i.e., its value will
be ignored.

The simple approach #1 is suitable for simple product line scenarios. Approach #2 should
be used for complex scenarios with large core technical feature models and/or longer
evolution periods of the overall product line infrastructure.

¶ isDesignVariabilityRationale : Boolean [1]

A VehicleFeature marked as a design variability rationale captures a variant showing up on
a concrete artifact level that needs to be modeled on the Vehicle Level as well, in order to
be directly available for immediate configuration on Vehicle Level. It is, from the abstraction
layer's point of view, not a true Vehicle Level feature.

If true, then isCustomerVisible is usually false but there may be rare exceptions.

¶ isRemoved : Boolean [1]

This attribute describes if the VehicleFeature is removed (but kept in the database for
tracking of evolution, which is required by the multi-level concept).

Associations

¶ deviationAttributeSet : DeviationAttributeSet [0..1] {composite}

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23DeviationAttributeSet

EAST-ADL Domain Model Specification version V2.1.12

39 (244)

Possible deviation attributes included in the VehicleFeature. If the VehicleFeature is part of
a reference feature model in the context of multi-level feature models, the attribute can
constrain the allowed deviations for the respective referring features.

Constraints
[1] VehicleFeatures can only be contained in FeatureModels on VehicleLevel.

Semantics
A VehicleFeature is a functional or non-functional characteristic, constraint or property that can be
present or not in a vehicle product line on the level of the complete system, i.e. vehicle.

EAST-ADL Domain Model Specification version V2.1.12

40 (244)

6 FunctionModeling

6.1 Overview

The function modeling is performed in the FunctionalAnalysisArchitecture (in the AnalysisLevel)
and the FunctionalDesignArchitecture (in the DesignLevel). The root component of the function
compositional hierarchy on AnalysisLevel is the FunctionalAnalysisArchitecture (FAA); the root
component of the function compositional hierarchy on DesignLevel is the
FunctionalDesignArchitecture (FDA), see the diagram for SystemModeling.

The main modeling concept applied here is functional component modeling: Functions interact
with one another via ports that are connected by connectors owned by the composing function.
Occurrences of functions are modeled by typed prototypes in the composing function. These
occurrences are typed by types. This naming convention of the type-prototype pattern is from
AUTOSAR, however the concept of types and typed elements is also available in e.g. UML2.

Figure 6. Diagram for FunctionModeling showing the concepts for function modeling at different
abstraction levels, elements in the DesignLevel are allocateable on elements in the hardware design
architecture.

EAST-ADL Domain Model Specification version V2.1.12

41 (244)

Figure 7. Diagram for FunctionPorts and their respective typing.

6.2 Element Descriptions

6.2.1 AllocateableElement (from FunctionModeling) {abstract}

Generalizations
None

Description
The AllocateableElement is an abstract superclass for elements that are allocateable.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The AllocateableElement abstracts all elements that are allocateable.

Subclasses of the abstract class AllocateableElement add their own semantics.

EAST-ADL Domain Model Specification version V2.1.12

42 (244)

6.2.2 Allocation (from FunctionModeling)

Generalizations

¶ EAElement (from Elements)

Description
The Allocation element contains function allocations. It can bundle function allocations that belong
together, e.g., all function allocations for a simulation.

Attributes
No additional attributes

Associations

¶ functionAllocation : FunctionAllocation [*] {composite}

The owned FunctionAllocations.

Constraints
No additional constraints

Semantics
The Allocation element contains function allocations, i.e., it can bundle function allocations that
belong together.

6.2.3 AnalysisFunctionPrototype (from FunctionModeling)

Generalizations

¶ FunctionPrototype (from FunctionModeling)

Description
The AnalysisFunctionPrototype represents references to the occurrence of the
AnalysisFunctionType that types it when it acts as a part.

The AnalysisFunctionPrototype is typed by an AnalysisFunctionType.

Attributes
No additional attributes

Associations

¶ type : AnalysisFunctionType [1]

«isOfType»

The type that defines this AnalysisFunctionPrototype.

Constraints
No additional constraints

Semantics
The AnalysisFunctionPrototype represents an occurrence of the AnalysisFunctionType that types
it.

6.2.4 AnalysisFunctionType (from FunctionModeling)

Generalizations

¶ FunctionType (from FunctionModeling)

Description
The AnalysisFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The AnalysisFunctionType is used

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionAllocation
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionType

EAST-ADL Domain Model Specification version V2.1.12

43 (244)

to model the functional structure on AnalysisLevel. The syntax of AnalysisFunctionTypes is
inspired from the type-prototype pattern used by AUTOSAR.

The AnalysisFunctions may interact with other AnalysisFunctions (i.e., also FunctionalDevices)
through their FunctionPorts.

Furthermore, an AnalysisFunction may be decomposed into contained parts that are
AnalysisFunctionPrototypes. This allows the functionalities provided by the parent
AnalysisFunction to be broken up hierarchically into sub-functionalities.

A FunctionBehavior may be associated with each AnalysisFunction. In the case where the
AnalysisFunction is decomposed, the behavior is a specification for the composed behavior of the
parts.

Attributes
No additional attributes

Associations

¶ part : AnalysisFunctionPrototype [*] {composite}

The parts contained in this AnalysisFunctionType.

Constraints
No additional constraints

Semantics
The AnalysisFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level AnalysisFunction. The AnalysisFunction represents the analysis
function used to describe the functionalities provided by a vehicle on the AnalysisLevel. At the
AnalysisLevel, AnalysisFunctions are defined and structured according to the functional
requirements, i.e., the functionalities provided to the user.

6.2.5 BasicSoftwareFunctionType (from FunctionModeling)

Generalizations

¶ DesignFunctionType (from FunctionModeling)

Description
The BasicSoftwareFunctionType allow for the representation of a layered architecture of
functionality on the DesignLevel. A BasicSoftwareFunctionType then represents a function in the
service layer.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The BasicSoftwareFunctionType is an abstraction of the middleware.

6.2.6 ClientServerKind (from FunctionModeling) «enumeration»

Generalizations
None

file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType

EAST-ADL Domain Model Specification version V2.1.12

44 (244)

Description
This element is an enumeration for the kind of the FunctionClientServerPort, which can either be a
"client" or a "server".

Enumeration Literals

¶ client

¶ server

Associations
No additional associations

Constraints
No additional constraints

Semantics
The ClientServerKind is an enumeration with literals that are used to distinguish between client
and server.

6.2.7 DesignFunctionPrototype (from FunctionModeling)

Generalizations

¶ AllocateableElement (from FunctionModeling)

¶ FunctionPrototype (from FunctionModeling)

Description
The DesignFunctionPrototype represents references to the occurrence of the DesignFunctionType
that types it when it acts as a part.

The DesignFunctionPrototype is typed by a DesignFunctionType.

Attributes
No additional attributes

Associations

¶ type : DesignFunctionType [1]

«isOfType»

The type that defines this DesignFunctionPrototype.

Constraints
No additional constraints

Semantics
The DesignFunctionPrototype represents an occurrence of the DesignFunctionType that types it.

6.2.8 DesignFunctionType (from FunctionModeling)

Generalizations

¶ FunctionType (from FunctionModeling)

Description
The DesignFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The DesignFunctionType is used to
model the functional structure on DesignLevel. The syntax of DesignFunctionTypes is inspired by
the type-prototype pattern used by AUTOSAR.

The DesignFunctions may interact with other DesignFunctions (i.e., also BasicSoftwareFunctions,
HardwareFunctions, and LocalDeviceManagers) through their FunctionPorts.

file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionType

EAST-ADL Domain Model Specification version V2.1.12

45 (244)

Furthermore, a DesignFunction may be decomposed into the contained parts that are
DesignFunctionPrototypes. This allows the functionalities provided by the parent DesignFunction
to be broken up hierarchically into sub-functionalities.

Execution time constraints on the DesignFunctionType can be expressed by
ExecutionTimeConstraints, see the Timing package.

If two or more occurrences of an elementary Function are allocated on the same ECU, the code
will be placed on the ECU only once (so these occurrences will use the same code but separate
memory areas for data).

Attributes
No additional attributes

Associations

¶ part : DesignFunctionPrototype [*] {composite}

The parts contained in this DesignFunctionType.

Constraints
No additional constraints

Semantics
The DesignFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level DesignFunction. The DesignFunction represents the design function
used to describe the functionalities provided by a vehicle on the DesignLevel. At the DesignLevel,
DesignFunctions are defined and structured according to the functional and hardware system
design.

6.2.9 EADirectionKind (from FunctionModeling) «enumeration»

Generalizations
None

Description
This element is an enumeration for the direction of a Port, which can either be "in", "out", or
"inout".

Enumeration Literals

¶ in

¶ inout

¶ out

Associations
No additional associations

Constraints
No additional constraints

Semantics
The EADirectionKind is an enumeration with literals describing the direction of ports.

6.2.10 FunctionalDevice (from FunctionModeling)

Generalizations

¶ AnalysisFunctionType (from FunctionModeling)

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionType

EAST-ADL Domain Model Specification version V2.1.12

46 (244)

Description
The FunctionalDevice represents an abstract sensor or actuator that encapsulates sensor/actuator
dynamics and the interfacing software. The FunctionalDevice is the interface between the
electronic architecture and the environment (connected by ClampConnectors, see the
Environment chapter). As such, it is a transfer function between the AnalysisFunction and the
physical entity that it measures or actuates.

A Realization dependency can be used for traceability from LocalDeviceManagers in the
DesignLevel and Sensors/Actuators in the hardware design architecture that are represented by
the FunctionalDevice.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints.

Semantics
The behavior associated with the FunctionalDevice is the transfer function between the
environment model representing the environment and an AnalysisFunction. The transfer function
represents the sensor or actuator and its interfacing hardware and software (connectors,
electronics, in/out interface, driver software, and application software).

6.2.11 FunctionAllocation (from FunctionModeling)

Generalizations

¶ EAElement (from Elements)

Description
FunctionAllocation represents an allocation constraint binding an AllocateableElement
(computation functions or communication connectors) on an AllocationTarget (computation or
communication resource).

Attributes
No additional attributes

Associations
No additional associations

Dependencies

¶ allocatedElement : AllocateableElement [1]

«instanceRef»

¶ target : AllocationTarget [1]

«instanceRef»

Constraints
No additional constraints

Semantics
FunctionAllocation specifies that the identified AllocationTarget is a host for the identified
AllocateableElement.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget

EAST-ADL Domain Model Specification version V2.1.12

47 (244)

6.2.12 FunctionClientServerInterface (from FunctionModeling) «atpType»

Generalizations

¶ TraceableSpecification (from Elements)

Description
The FunctionClientServerInterface is used to specify the operations in FunctionClientServerPorts.

Attributes
No additional attributes

Associations

¶ operation : Operation [*] {composite}

The owned Operation.

Constraints
No additional constraints

Semantics
The operations of the FunctionClientServerInterface are required or provided through the
FunctionClientServerPorts typed by the FunctionClientServerInterface.

6.2.13 FunctionClientServerPort (from FunctionModeling)

Generalizations

¶ FunctionPort (from FunctionModeling)

Description
The FunctionClientServerPort is a FunctionPort for client-server interaction. A number of
FunctionClientServerPorts of clientServerType "client" can be connected to one
FunctionClientServerPort of clientServerType "server", i.e. when connected the multiplicity for the
connection is n to 1 for client and server.

Attributes

¶ kind : ClientServerKind [1]

Associations

¶ type : FunctionClientServerInterface [1]

«isOfType»

The interface of this FunctionClientServerPort.

Constraints
[1] A FunctionClientServerPort of clientServerType "client" can only be connected to one
FunctionClientServerPort of clientServerType "server".

Semantics
The FunctionClientServerPort is a FunctionPort for client-server interaction.

FunctionClientServerPorts are single buffer overwrite and nonconsumable.

6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement»

Generalizations

¶ AllocateableElement (from FunctionModeling)

¶ EAConnector (from Elements)

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Operation
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionClientServerInterface
file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23EAConnector

EAST-ADL Domain Model Specification version V2.1.12

48 (244)

¶ EAElement (from Elements)

Description
The FunctionConnector indicates that the connected FunctionPorts exchange signals or client-
server requests/responses.

A FunctionConnector used to connect ports of parts within a FunctionType is called an assembly
connector. A FunctionConnector between a port of a part and a port of the FunctionType itself is
called a delegation connector.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

¶ port : FunctionPort [2]

«instanceRef»

Constraints
[1] Can connect two FunctionFlowPorts of different directions when this is an assembly
FunctionConnector.

[2] Can connect two FunctionFlowPorts of the same direction when this is a delegation
FunctionConnector.

[3] Can connect two ClientServerPorts of different kinds when this is an assembly
FunctionConnector.

[4] Can connect two ClientServerPorts of the same kind when this is a delegation
FunctionConnector.

[5] Can connect two FunctionFlowPorts with direction inout.

Semantics
The FunctionConnector connects a pair of FunctionFlowPorts or FunctionClientServerPorts. If two
FunctionFlowPorts are connected, data elements of the type of the output FunctionFlowPort flow
from the output FunctionFlowPort to the input FunctionFlowPort. If FunctionClientServerPorts are
connected, the client calls the server according to the operations of the interfaces.

The FunctionPrototype with the connected port has to be identified by the FunctionConnector as
well.

The FunctionConnector is normally routed according to the hardware topology and the allocation
of source and destination. If there are redundant paths, a FunctionAllocation may be used to
prescribe allocation.

6.2.15 FunctionFlowPort (from FunctionModeling)

Generalizations

¶ FunctionPort (from FunctionModeling)

Description
The FunctionFlowPort is a metaclass for flowports, inspired by the SysML FlowPort.

Attributes

¶ direction : EADirectionKind [1]

Associations

¶ type : EADatatype [1]

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

49 (244)

«isOfType»

The single EADatatype for this port.

¶ defaultValue : EAValue [0..1] {composite}

Constraints
No additional constraints

Semantics
FunctionFlowPorts are single buffer overwrite and nonconsumable.

FunctionFlowPorts can be connected if their FunctionPort signatures match; i.e.:

EADatatypes that are ValueTypes are compatible if

* They have the same "dimension".

* They have the same "unit".

EADatatypes that are RangeableValueTypes are compatible if

* The source EADatatype has the same or better "accuracy".

* They have the same baseRangeable.

* The source EADatatype has the same or smaller "maxValue".

* The source EADatatype has the same or higher "minValue".

* The source EADatatype has the same or higher "resolution".

* They have the same "significantDigits".

EADatatypes that are EnumerationValueTypes are compatible if

* They have the same baseEnumeration.

A FunctionFlowPort with direction=in is called an input FunctionFlowPort:

The input FunctionFlowPort indicates that the containing Function requires input data. The
EADatatype of this data is defined by the associated EADatatype. The data is sampled at the
invocation of the containing entity for discrete Functions. For continuous Functions, the input
FunctionFlowPort represents a continuous input connection point.

The input FunctionFlowPort declares a reception point of data. It represents a single element
buffer, which is overridden with the latest data. The type of the data is defined by the associated
EADatatype.

A FunctionFlowPort with direction=out is called an output FunctionFlowPort:

The output FunctionFlowPort indicates that the containing Function provides output data. The
EADatatype of this data is defined by the associated EADatatype. The data is sent at the
completion of the containing entity for discrete Functions. For continuous Functions, the output
FunctionFlowPort represents a (time-)continuous output connection point.

The output FunctionFlowPort declares a transmission point of data. The type of the data is defined
by the associated EADatatype.

6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

¶ EAPort (from Elements)

¶ EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

50 (244)

Description
The ports conserve variables for component interaction.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Subclasses of the abstract class FunctionPort add their own semantics.

6.2.17 FunctionPowerPort (from FunctionModeling)

Generalizations

¶ FunctionPort (from FunctionModeling)

Description
The FunctionPowerPort is a FunctionPort for denoting the physical interactions between
environment and sensing/actuation functions.

Attributes
No additional attributes

Associations

¶ type : CompositeDatatype [1]

«isOfType»

The Datatype for the flow physical variables of this FunctionPowerPort, specifying the
Across and Through variables with two separate datatypePrototypes.

Constraints
[1] The owner of a FunctionPowerPort is either a FunctionalDevice or a HardwareFunctionType.
Alternatively it is owned by a FunctionType typing a prototype in Environment.

[2] Two connected FunctionPowerPort must have the same Datatype.

[3] The typing Datatype shall have two datatypePrototypes called Across and Through, with
Datatypes that are consistent and representing the variables of the PowerPort.

Semantics
The FunctionPowerPort conserves physical variables in a dynamic process.

The typing CompositeDatatype owns two EADatatypePrototypes called Across and Through,
representing the exchanged physical variables of the FunctionPowerPort. In two or more directly
connected function power ports, the Across variables always get the same value and the Through
variables always sum up to zero.

6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

¶ EAElement (from Elements)

¶ EAPrototype (from Elements)

file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23CompositeDatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAPrototype

EAST-ADL Domain Model Specification version V2.1.12

51 (244)

Description
FunctionPrototype represents a reference to the occurrence of a FunctionType when it acts as a
part.

A concrete specialization of the FunctionPrototype is typed by a concrete specialization of
FunctionType.

FunctionTrigger in the Behavior package is associated with a FunctionPrototype.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The FunctionPrototype is an abstract concept with concrete specializations for the use on the
AnalysisLevel and DesignLevel.

6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType»

Generalizations

¶ EAType (from Elements)

¶ Context (from Elements)

Description
The abstract metaclass FunctionType abstracts the function component types that are used to
model the functional structure, which is distinguished from the implementation of component types
using AUTOSAR. The syntax of FunctionTypes is inspired from the concept of Block from SysML.

FunctionBehavior and FunctionTrigger in the Behavior package are associated to a FunctionType.

Attributes

¶ isElementary : Boolean [1]

True, when this type must not have any parts.

Associations

¶ port : FunctionPort [*] {composite}

Owned ports.

¶ connector : FunctionConnector [*] {composite}

The connectors that connect ports of parts as assembly connectors or ports of this type
and ports of parts as delegation connectors.

¶ portGroup : PortGroup [*] {composite}

Grouping of ports owned by this element.

Constraints
[1] Elementary FunctionTypes shall not have parts.

Semantics
The FunctionType abstracts the function component types that are used to model the functional
structure on AnalysisLevel and DesignLevel.

Leaf functions of an EAST-ADL function hierarchy are called elementary Functions.

file:///C:/Volvo/MAENAD/index.html%23EAType
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionConnector
file:///C:/Volvo/MAENAD/index.html%23PortGroup

EAST-ADL Domain Model Specification version V2.1.12

52 (244)

Elementary Functions have synchronous execution semantics:

1. Read inputs

2. Execute (duration: Execution time)

3. Write outputs

Execution is defined by a behavior that acts as a transfer function.

Subclasses of the abstract class FunctionType add their own semantics.

If a behavior is attached to the FunctionType, the execution semantic for a discrete elementary
FunctionType complies with the run-to-completion semantic. This has the following implications:

1. Input that arrives at the input FunctionPorts after execution begins will be ignored until the next
execution cycle.

2. If more than one input value arrives per FunctionPort before execution begins, the last value will
override all previous ones in the public part of the input FunctionPort (single element buffers for
input).

3. The local part of a FunctionPort does not change its value during execution of the behavior.

4. During an execution cycle, only one output value can be sent per FunctionPort. If consecutive
output values are produced on the same FunctionPort during a single execution cycle, the last
value will override all previous ones on the output FunctionPort (single element buffers for output).

5. Output will not be available at an output FunctionPort before execution ends.

6. Elementary FunctionTypes may not produce any side effects (i.e., all data passes the
FunctionPorts).

6.2.20 HardwareFunctionType (from FunctionModeling)

Generalizations

¶ DesignFunctionType (from FunctionModeling)

Description
The HardwareFunctionType is the transfer function for the identified HardwareComponentType or
a specification of an intended transfer function. HardwareFunctionType types
DesignFunctionPrototypes in the FunctionalDesignArchitecture. The ports of such
DesignFunctionPrototypes are typically connected to a plant model with ClampConnectors.

DesignFunctionPrototypes typed by HardwareFunctionType may be allocated to
HardwareComponents in which case the HardwareFunctionType must match the
HardwareFunctionType of the target HardwareComponent. Typically, the same
HardwareFunctionType types the prototype that is allocated to its target HardwareComponent.

HardwareFunctionTypes are typically transfer functions of sensors, actuators, amplifiers and other
peripherals with a fixed transfer function. Thus, HardwareFunctionTypes are generally not defined
for ECUNodes.

Attributes
No additional attributes

Associations

¶ hardwareComponent : HardwareComponentType [0..1]

The HardwareComponentType with the specified HardwareFunction.

Constraints
[1] A DesignFunctionPrototype typed by a HardwareFunctionType shall be connected to the
EnvironmentModel via ClampConnectors and to BasicSoftwareFunctions via FunctionConnectors.

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

53 (244)

[2] A HardwareFunctionType shall only contain prototypes typed by HardwareFunctionType.

Semantics
The HardwareFunctionType is the transfer function for the associated hardware components such
as sensors, actuators, amplifiers, etc or a specification of an intended transfer function.

A DesignFunctionPrototype typed by a HardwareFunctionType allocated to Sensors or Actuators
is the interfacing element to the plant model.

6.2.21 LocalDeviceManager (from FunctionModeling)

Generalizations

¶ DesignFunctionType (from FunctionModeling)

Description
The LocalDeviceManager represents a DesignFunction that act as a manager or functional
interface to Sensors, Actuators and other devices. It is responsible for translating between the
electrical/logical interface of the device, as provided by a BasicSoftwareFunction, and the physical
interface of the device. For example, consider a temperature sensor with voltage output. The
HardwareFunctionType defines the transfer from temperature to voltage. A BasicSoftwareFunction
relays the voltage from the microcontroller's I/O. The role of the LocalDeviceManager is now to
translate from voltage to temperature value, taking into account the sensor's characteristics such
as nonlinearities, calibration, etc. The resulting temperature is available to the other
DesignFunctions. By separating the device specific part from the middleware and ECU specific
parts, it is possible to systematically change interface function together with the device.

The role of the LocalDeviceManager is to act as an interface between the electrical output of
Sensors or electrical input of Actuators and the physical quantity of those devices.

Attributes
No additional attributes

Associations
No additional associations

Constraints
[1] A DesignFunctionPrototype typed by a LocalDeviceManager shall be allocated to the same
ECU node as the device that it manages is connected to.

[2] A LocalDeviceManager shall be connected with BasicSoftwareFunction(s) and
DesignFunction(s).

Semantics
The LocalDeviceManager encapsulates the device-specific or functional parts of a Sensor or
Actuator, device, etc. interface.

6.2.22 Operation (from FunctionModeling)

Generalizations

¶ EAElement (from Elements)

Description
The Operation is the provided/required operation of a FunctionClientServerInterface. It can specify
its return values and arguments by EADatatypePrototypes.

Attributes
No additional attributes

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

54 (244)

Associations

¶ argument : EADatatypePrototype [*] {ordered} {composite}

The argument value of the Operation.

¶ return : EADatatypePrototype [0..1] {composite}

The return value of the Operation.

Constraints
No additional constraints

Semantics
The Operation is the provided/required operation of a FunctionClientServerInterface.

6.2.23 PortGroup (from FunctionModeling)

Generalizations

¶ EAElement (from Elements)

Description
The PortGroup represents several FunctionPorts grouped into one. All FunctionPorts that are part
of a PortGroup are graphically represented as a single FunctionPort. The PortGroup has no
semantic meaning except that it makes graphical representation of the connected FunctionPorts
easier to read, and provides a means to logically organize several FunctionPorts into one group.

Connectors are still connected to the contained FunctionPorts, but tool support may simplify
connections by allowing semiautomatic or automatic connection to all FunctionPorts of a
PortGroup.

Note that the term "PortGroup" is also used by AADL.

Attributes
No additional attributes

Associations

¶ port : FunctionPort [*]

The grouped FunctionPorts.

¶ portGroup : PortGroup [*] {composite}

Grouping of ports owned by this element.

Constraints
[1] The FunctionPorts in a PortGroup must all be of the same component; all FunctionPorts in a
PortGroup must be of the same kind (FunctionFlowPort with same EADirectionKind or
FunctionClientServerPort with same ClientServerKind).

Semantics
The PortGroup provides the means to organize FunctionPorts and FunctionConnectors. It does
not add semantics. In the model, the FunctionPorts contained in the PortGroup are connected as
individual FunctionPorts.

file:///C:/Volvo/MAENAD/index.html%23EADatatypePrototype
file:///C:/Volvo/MAENAD/index.html%23EADatatypePrototype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23PortGroup

EAST-ADL Domain Model Specification version V2.1.12

55 (244)

7 HardwareModeling

7.1 Overview

The package HardwareModeling contains the elements to model physical entities of the
embedded electrical/electronic system. These elements allow the hardware to be captured in
sufficient detail to allow preliminary allocation decisions.

The allocation decisions are based on requirements on timing, storage, data throughput,
processing power, etc. that are defined in the Functional Analysis Architecture and the Functional
Design Architecture.

Conversely, the Functional Analysis Architecture and the Functional Design Architecture may be
revised based on analysis using information from the Hardware Design Architecture. An example
is control law design, where algorithms may be modified for expected computational and
communication delays. Thus, the Hardware Design Architecture contains information about
properties in order to support, e.g., timing analysis and performance in these respects.

Figure 8. Diagram for HardwareModeling.

7.2 Element Descriptions

7.2.1 Actuator (from HardwareModeling)

Generalizations

¶ HardwareComponentType (from HardwareModeling)

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

56 (244)

Description
The Actuator is the element that represents electrical actuators, such as valves, motors, lamps,
brake units, etc. Non-electrical actuators such as the engine, hydraulics, etc. are considered part
of the plant model (environment). Plant models are not part of the Hardware Design Architecture.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Actuator metaclass represents the physical and electrical aspects of actuator hardware. The
logical aspect is represented by a HardwareFunctionType associated with the Actuator.

7.2.2 AllocationTarget (from HardwareModeling) {abstract}

Generalizations

¶ EAElement (from Elements)

Description
The AllocationTarget is a superclass for elements to which AllocateableElements can be allocated.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
An AllocationTarget is a resource element in the Hardware Design Architecture which may host
functional behaviors in the Functional Design Architecture.

7.2.3 CommunicationHardwarePin (from HardwareModeling)

Generalizations

¶ HardwarePin (from HardwareModeling)

Description
CommunicationHardwarePin represents an electrical connection point that can be used to define
how the wire harness is logically defined.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The CommunicationHardwarePin represents the hardware connection point of a communication
bus.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23HardwarePin

EAST-ADL Domain Model Specification version V2.1.12

57 (244)

Depending on modeling style, one or two pins may be defined for a dual-wire bus.

7.2.4 ElectricalComponent (from HardwareModeling) «atpType»

Generalizations

¶ HardwareComponentType (from HardwareModeling)

Description
ElectricalComponent represents a hardware element as e.g. relays, batteries, capacitors and other
non-computational, non-interactional (with plant) elements.

Attributes

¶ isActive : Boolean [1]

Indicates if the PowerSupply is active or passive.

Associations
No additional associations

Constraints
No additional constraints

Semantics
ElectricalComponent may be active (e.g., a battery) or passive (main relay).

7.2.5 HardwareBusKind (from HardwareModeling) «enumeration»

Generalizations
None

Description
HardwareBusKind is an enumeration type representing different kinds of busses.

Enumeration Literals

¶ EventTriggered

Bus is event-triggered

¶ other

Another type of bus communication

¶ TimeAndEventTriggered

Bus is both time and event-triggered

¶ TimeTriggered

Bus is time-triggered

Associations
No additional associations

Constraints
No additional constraints

Semantics
HardwareBusKind represents the kind of a hardware connector as given by the definition of the
respective Enumeration Literal.

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

58 (244)

7.2.6 HardwareComponentPrototype (from HardwareModeling) «atpPrototype»

Generalizations

¶ EAPrototype (from Elements)

¶ AllocationTarget (from HardwareModeling)

Description
Appears as part of a HardwareComponentType and is itself typed by a HardwareComponentType.
This allows for a reference to the occurrence of a HardwareComponentType when it acts as a
part. The purpose is to support the definition of hierarchical structures, and to reuse the same type
of Hardware at several places. For example, a wheel speed sensor may occur at all four wheels,
but it has a single definition.

Attributes
No additional attributes

Associations

¶ type : HardwareComponentType [1]

«isOfType»

Constraints
No additional constraints

Semantics
The HardwareComponentPrototype represents an occurrence of a hardware element, according to
the type of the HardwareComponentPrototype.

7.2.7 HardwareComponentType (from HardwareModeling) «atpType»

Generalizations

¶ EAType (from Elements)

¶ Context (from Elements)

Description
The HardwareComponentType represents a hardware element on an abstract level, allowing
preliminary engineering activities related to hardware.

Attributes
No additional attributes

Associations

¶ portConnector : HardwarePortConnector [*] {composite}

¶ connector : HardwareConnector [*] {composite}

Connectors owned by this element.

¶ part : HardwareComponentPrototype [*] {composite}

Parts owned by this element.

¶ pin : HardwarePin [*] {composite}

Hardware pins owned by this type.

¶ port : HardwarePort [*] {composite}

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAPrototype
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType
file:///C:/Volvo/MAENAD/index.html%23EAType
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23HardwarePortConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePort

EAST-ADL Domain Model Specification version V2.1.12

59 (244)

Semantics
The HardwareComponentType is a structural entity that defines a part of an electrical architecture.
Through its ports it can be connected to electrical sources and sinks. Its logical behavior, the
transfer function, may be defined in a HardwareFunctionType referencing the
HardwareComponentType. This is typically connected through its ports to the environment model
to participate in the end-to-end behavioral definition of a function.

7.2.8 HardwareConnector (from HardwareModeling) «atpStructureElement»

Generalizations

¶ EAConnector (from Elements)

¶ EAElement (from Elements)

Description
Hardware connectors represent wires that electrically connect the hardware components through
its pins.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

¶ pin : HardwarePin [2]

«instanceRef»

Constraints
No additional constraints

Semantics
The connector joins the two referenced pins electrically.

7.2.9 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement»

Generalizations

¶ EAPort (from Elements)

¶ EAElement (from Elements)

Description
HardwarePin represents electrical connection points in the hardware architecture. Depending on
modeling style, the actual wire or a logical connection can be considered.

Attributes

¶ direction : EADirectionKind [0..1]

The direction of current through the pin.

¶ isGround : Boolean [0..1]

Indicates that the pin is connected to ground.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAConnector
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

60 (244)

Semantics
Hardware pin represents an electrical connection point.

7.2.10 HardwarePort (from HardwareModeling) «atpStructureElement»

Generalizations

¶ AllocationTarget (from HardwareModeling)

¶ EAPort (from Elements)

Attributes

¶ isShield : Boolean [1]

True if this port is representing the shield.

Associations

¶ referencedPin : HardwarePin [*]

¶ containedPin : HardwarePin [*] {composite}

¶ containedPort : HardwarePort [*] {composite}

Constraints
No additional constraints

Semantics
-

7.2.11 HardwarePortConnector (from HardwareModeling) «atpStructureElement»

Generalizations

¶ AllocationTarget (from HardwareModeling)

¶ EAConnector (from Elements)

Attributes

¶ busSpeed : Float [1]

¶ busType : HardwareBusKind [1]

Associations

¶ connector : HardwareConnector [*] {composite}

Dependencies

¶ port : HardwarePort [2]

«instanceRef»

Constraints
No additional constraints

Semantics
-

7.2.12 IOHardwarePin (from HardwareModeling)

Generalizations

¶ HardwarePin (from HardwareModeling)

file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePort
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23EAConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareConnector
file:///C:/Volvo/MAENAD/index.html%23HardwarePort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin

EAST-ADL Domain Model Specification version V2.1.12

61 (244)

Description
IOHardwarePin represents an electrical connection point for digital or analog I/O.

Attributes

¶ type : IOHardwarePinKind [1]

kind defines whether the IOHardwarePort is digital, analog or PWM (Pulse Width
Modulated).

Associations
No additional associations

Constraints
No additional constraints

Semantics
The IOHardwarePin represents an electrical pin or connection point.

7.2.13 IOHardwarePinKind (from HardwareModeling) «enumeration»

Generalizations
None

Description
IOHardwarePinKind is an enumeration type representing different kinds of I/O Hardware Ports.

Enumeration Literals

¶ analog

I/O with varying amplitude.

¶ digital

I/O with fixed amplitude.

¶ other

Another type of I/O port.

¶ pwm

PWM (Pulse Width Modulated) modulated I/O, i.e. a signal with fixed frequency and
amplitude but varying duty cycle.

Associations
No additional associations

Constraints
No additional constraints

Semantics
IOHardwarePinKind represents the kind of IOHardwarePin as given by the definition of the
respective Enumeration Literal.

7.2.14 Node (from HardwareModeling)

Generalizations

¶ HardwareComponentType (from HardwareModeling)

Description
Node represents the computer nodes of the embedded electrical/electronic system. Nodes consist
of processor(s) and may be connected to sensors, actuators and other ECUs via a BusConnector.

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

62 (244)

Node denotes an electronic control unit that acts as a computing element executing Functions. In
case a single CPU ECU is represented, it is sufficient to have a single, non-hierarchical Node.

Attributes

¶ executionRate : Float = 1.0 [1]

ExecutionRate is used to compute an approximate execution time. A nominal execution
time divided by executionRate provides the actual execution time to be used e.g. for timing
analysis in feasibility studies.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Node element represents an ECU, i.e. an Electronic Control Unit, and an allocation target of
FunctionPrototypes.

The Node executes its allocated FunctionPrototypes at the specified executionRate. The
executionRate denotes how many execution seconds of an allocated functionPrototype´s
execution time are processed in each real-time second. Actual execution time is thus found by
dividing the parameters of the ExecutionTimeConstraint with executionRate.

Example: If an ECU is 25% faster than a standard ECU (e.g., in a certain context, execution times
are given assuming a nominal speed of 100 MHz; our CPU is then 125 MHz), the executionRate is
1.25. An execution time of 5 ms would then become 4 ms on this ECU.

7.2.15 PowerHardwarePin (from HardwareModeling)

Generalizations

¶ HardwarePin (from HardwareModeling)

Description
PowerHardwarePin represents a pin that is primarily intended for power supply, either providing or
consuming energy.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
A PowerHardwarePin is primarily intended to be a power supply. The direction attribute of the pin
defines whether it is providing or consuming energy.

7.2.16 Sensor (from HardwareModeling)

Generalizations

¶ HardwareComponentType (from HardwareModeling)

Description
Sensor represents a hardware entity for digital or analog sensor elements. The Sensor is
connected electrically to the electrical entities of the Hardware Design Architecture.

file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

63 (244)

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Sensor denotes an electrical sensor. The Sensor represents the physical and electrical aspects of
sensor hardware. The logical aspect is represented by a HardwareFunctionType associated with
the Sensor.

EAST-ADL Domain Model Specification version V2.1.12

64 (244)

8 Environment

8.1 Overview

The Environment model is used to describe the environment of the vehicle electric and electronic
architecture. It is modeled by continuous functions representing the system environment.

Figure 9. Diagram for Environment. The EnvironmentModel is a packageable element, but note that
it is not a part of the SystemModel.

8.2 Element Descriptions

8.2.1 ClampConnector (from Environment) «atpStructureElement»

Generalizations

¶ EAElement (from Elements)

Description
The clamp connector connects ports across function boundaries and containment hierarchies. It is
used to connect from an EnvironmentModel to the FunctionalAnalysisArchitecture, the
FunctionalDesignArchitecture, the autosarSystem or another EnvironmentModel. Typically, the
EnvironmentModel contains physical ports, which restrict the valid ports in the
FunctionalAnalysisArchitecture to those on FunctionalDevices and in the
FunctionalDesignArchitecture to those on HardwareFunctions. In case the connection concerns
logical interaction, this restriction does not apply. The ClampConnector is always an assembly
connector, never a delegation connector.

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

65 (244)

Attributes
No additional attributes

Associations
No additional associations

Dependencies

¶ port : FunctionPort [2]

«instanceRef»

Constraints
[1] Can connect two FunctionFlowPorts of different direction.

[2] Can connect two FunctionClientServerPorts of different clientServerType.

[3] Can connect two FunctionFlowPorts with direction inout.

[4] Cannot connect ports in the same SystemModel.

Semantics
ClampConnectors represents the interaction link between a functional model of the EE
Architecture and the functional model of the plant.

8.2.2 Environment (from Environment)

Generalizations

¶ Context (from Elements)

Description
The collection of the environment functional descriptions. This collection can be done across the
EAST-ADL abstraction levels.

An environment model can contain functionPrototypes given by either AnalysisFunction or
DesignFunction. The environment model does not have abstraction levels as in the system model
(e.g., analysisLevel, designLevel).

A functionPrototype of the environment model can have interactions with FAA FunctionalDevice
and an FDA HardwareFunction through the ClampConnector.

Attributes
No additional attributes

Associations

¶ environmentModel : FunctionPrototype [0..1] {composite}

¶ clampConnector : ClampConnector [*] {composite}

Constraints
No additional constraints

Semantics
Environment is a container element for the entities surrounding the EE architecture and their
connections to the EE architecture. The function hierarchy of the Environment interacts with the
EE System through Clamp Connectors connected to the SystemModel's functions.

file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23ClampConnector

EAST-ADL Domain Model Specification version V2.1.12

66 (244)

Part III Behavioral Constructs

This part specifies the dynamic, behavioral constructs represented by metaclasses in EAST-ADL.

EAST-ADL Domain Model Specification version V2.1.12

67 (244)

9 Behavior

9.1 Overview

This chapter describes the behavioral constructs of the EAST-ADL language. What we mean by
behavior here is either a function performing some computation on provided data (FlowPort
interaction) or the execution of a service called upon by another function (in a ClientServer
interaction).

The execution of the behavior assumes a strict run-to-completion, single buffer-overwrite
management of data. That is, each execution starts with the reading of data, which are not stored
locally and are constantly replaced by fresh data arriving on ports. The function then performs
some calculation and finally outputs some data on the output ports. The execution is non-
concurrent within an elementary function: only one behavior is active at any point in time. Among a
set of functions, behavior is fully concurrent, except for timing precedence constraints. This is to
avoid making assumptions that are not met at Design and Implementation Levels. Design Level:
All functions are as concurrent as hardware design allows. Timing precedence constraints may
constrain this further.

A FunctionBehavior in EAST-ADL is mainly a reference point to some description provided
elsewhere (outside the EAST-ADL model) in a tool-dependent format, as depicted in the diagram
for the behavior of a function below. This enables reuse of current behavior descriptions contained
in the tools currently used by automotive companies and suppliers. Given that, requirements and
traceability information can be provided for behavior in relation to the rest of the EAST-ADL model.
A list of typical tool formats is provided as an enumeration, FunctionBehaviorKind. Depending on
the EAST-ADL language implementation, such a behavior description can be provided in the
model itself; for instance, when using a UML implementation of the EAST-ADL, UML behavior
modeling can be used. Yet, it should be noted that the behavior described shall be compliant with
the execution semantics of an EAST-ADL function.

The rest of the behavioral constructs (see the following diagram of the behavior model
organization) relates to the organization of the triggering of behavior attached to functions. At a
high level one can define activation Modes, which may span across the whole architecture. Such
Modes can be regrouped in exclusive sets. Whenever a FunctionTrigger or a FunctionBehavior
refers to a Mode, this means its activation is dependent on the Mode being active or not. Thus,
different execution configurations can be defined.

Triggering of the behavior itself, defined by the FunctionTrigger, can be either time- or event-
based and be either type-wise or prototype-wise to allow further adjustments of functions in a
particular context. Events and timing constraints are defined in the Timing, Events, and
TimingConstraints sections.

EAST-ADL Domain Model Specification version V2.1.12

68 (244)

Figure 10. Diagram for the behavior of a function.

Figure 11. Diagram for behavior model organization.

9.2 Element Descriptions

9.2.1 Behavior (from Behavior)

Generalizations

¶ Context (from Elements)

Description
Behavior is a container of FunctionBehaviors. It enables grouping of the behaviors assigned to
functions in a particular context on which TraceableSpecifications can be applied. This can take

file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

69 (244)

any appropriate form depending on the language implementation (for instance in a UML
implementation it could be a Package).

The collection of functional behaviors can be performed across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

¶ behavior : FunctionBehavior [*] {composite}

This is the set of FunctionBehaviors managed by the container.

¶ modeGroup : ModeGroup [*] {composite}

The contained mode groups.

¶ functionTrigger : FunctionTrigger [*] {composite}

Constraints
No additional constraints

Semantics
This element has the same role and semantics as Context, but for behavioral aspects.

9.2.2 FunctionBehavior (from Behavior)

Generalizations

¶ Context (from Elements)

Description
FunctionBehavior represents the behavior of a particular FunctionType - referred to by the
association to FunctionType. What is meant by behavior is a transfer function performing some
data computation (in case of FlowPort interaction) or an operation that can be called by another
function (in case of ClientServer interaction). The representation property indicates the kind of
representation used to describe the behavior (see FunctionBehaviorKind). The representation
itself (e.g., defined in an external model file) is identified by a URL String in the path property. If
the representation is provided in the same model file as the system itself, the path property is not
used. It is merely a placeholder for the purpose of containing information about and links to the
external behavioral model.

FunctionBehavior may refer to execution modes by the association to the element Mode. This is
not mandatory; however, when provided, the relation indicates the list of execution Modes in which
the FunctionBehavior can potentially be executed (see element Mode).

The triggering of a FunctionBehavior is unknown to the behavior. It is defined by FunctionTriggers
(see this element).

Note that the association between FunctionBehavior and FunctionType is specified as a one-way
navigable link from FunctionBehavior to FunctionType: what this means is that the EAST-ADL
language specification does not require a FunctionType be aware of the FunctionBehavior it is
assigned to. Only the navigation from behavior to function is mandatory; the implementation of a
reverse link might however be provided depending on the tool support.

Although each FunctionBehavior can refer to at most one FunctionType, note that several
FunctionBehaviors can refer to the same FunctionType. In this case, when a FunctionType has
several behaviors, only one behavior shall be active at any given time instant, i.e., no concurrent
behaviors are allowed in EAST-ADL functions. For instance we cannot have one active behavior in
Simulink and one in Modelica. Both can be referenced in the same function, but at any given time,
only one is executable. Conditions such as modes and variability must prevent two behaviors
being potentially active at the same time.

file:///C:/Volvo/MAENAD/index.html%23FunctionBehavior
file:///C:/Volvo/MAENAD/index.html%23ModeGroup
file:///C:/Volvo/MAENAD/index.html%23FunctionTrigger
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

70 (244)

Note also that FunctionBehaviors are assigned to FunctionTypes and not to FunctionPrototypes.
This means that among a set of FunctionPrototypes, which share the same type, behaviors are
also shared. However when a FunctionBehavior refer to Modes, which are referred to by different
FunctionTriggers, different triggering conditions can be provided among a set of
FunctionPrototypes for the same set of behaviors - see FunctionTrigger.

In the case where the identified FunctionType is decomposed into parts, the behavior is a
specification for the composed behavior of the FunctionType.

Attributes

¶ path : String [1]

The path to the file or model entity containing the behavior.

¶ representation : FunctionBehaviorKind [1]

The type of representation used to describe the behavior.

Associations

¶ function : FunctionType [0..1]

The FunctionType to which the behavior is assigned.

¶ mode : Mode [*]

The execution Modes in which the behavior can be potentially executed.

Constraints
No additional constraints

Semantics
The semantics of FunctionBehavior follows the semantics of the behavioral representation/tool
used (for instance SIMULINK, ASCET, etc.). However, in relation to the EAST-ADL model, the
FunctionBehavior has synchronous execution semantics:

1. Read inputs from input ports

2. Execute behavior with fixed inputs (run to completion)

3. Provide outputs to output ports

The data transfer between the EAST-ADL ports and the FunctionBehavior is representation/tool-
specific and considered part of the execution of the FunctionBehavior.

9.2.3 FunctionBehaviorKind (from Behavior) «enumeration»

Generalizations
None

Description
FunctionBehaviorKind is an enumeration, which lists the various standards or tools used to
describe a FunctionBehavior. It is used as a property of a FunctionBehavior. Several standards or
tools are listed; however, one can always extend this list by using the literal OTHER.

Enumeration Literals

¶ ASCET

¶ MARTE

¶ OTHER

¶ SCADE

¶ SCILAB

file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23Mode

EAST-ADL Domain Model Specification version V2.1.12

71 (244)

¶ SDL

¶ SIMULINK

¶ STATEMATE

¶ UML

Associations
No additional associations

Constraints
No additional constraints

Semantics
Distinction between UML and MARTE comes from the slight differences in the behavioral
definitions (namely concerning data-flow oriented behaviors).

It should be noted that though one can use several languages to provide a representation of a
FunctionBehavior, the semantics shall remain compliant with the overall EAST-ADL execution
semantics, see FunctionBehavior.

9.2.4 FunctionTrigger (from Behavior)

Generalizations

¶ EAExpression (from Values)

¶ EAElement (from Elements)

Description
FunctionTrigger represents the triggering parameters necessary to define the execution of an
identified FunctionType or FunctionPrototype. When referring to a FunctionType, a
FunctionTrigger applies to all FunctionPrototypes of the given type. When referring to a
FunctionPrototype, the trigger is only valid for this particular FunctionPrototype.

Triggering is defined either as event-driven or time-driven - depending on the property
triggerPolicy. If set to TIME, the timing constraint is defined with an event constraint associated
with the Function's or FunctionPrototype's EventFunction. The function event refers to the
activation of the function. If set to EVENT the referenced ports trigger the function using AND
semantics, i.e., activate the function.

In addition, a FunctionTrigger may refer to a list of Modes in which the trigger will be considered as
potentially active. As of FunctionBehaviors may also refer to Modes, it is possible to arrange
various function configurations for which different sets of triggers and behaviors are active. And
this, at various levels of granularity, either with a type-wise scope (by referring to a FunctionType)
or specifically at prototype level (by referring to a FunctionPrototype).

Note that several FunctionTriggers may be assigned to the same Function (Type or Prototype), for
instance to define alternative trigger conditions and/or timing constraints.

Attributes

¶ triggerPolicy : TriggerPolicyKind [1]

Defines the triggering policy, either EVENT or TIME. The function event refers to the
activation of the function. If set to EVENT, one or several ports of the Function triggers the
function, i.e., activates the function.

Associations

¶ port : FunctionPort [*]

The FunctionPorts that act as triggers individually or as specified in the triggerCondition.

file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort

EAST-ADL Domain Model Specification version V2.1.12

72 (244)

¶ function : FunctionType [0..1]

The FunctionType that the FunctionTrigger refers to.

¶ functionPrototype : FunctionPrototype [0..1]

The FunctionPrototype that the FunctionTrigger refers to.

¶ mode : Mode [*]

The execution Modes in which the FunctionTrigger is active.

Constraints
[1] The port association must not be empty when triggerPolicy is EVENT.

[2] The port association is empty when triggerPolicy is TIME.

[3] Function and functionPrototype are mutually exclusive associations. A FunctionTrigger either
identifies a FunctionType or a FunctionPrototype as its target function, but not both.

[4] Only FunctionFlowPort of FlowDirection=in shall be referred to in the association port.

Semantics
Association Mode defines in which modes the trigger is active.

The FunctionBehavior referenced by the FunctionTrigger is invoked when the FunctionTrigger is
active. If multiple ports are referenced, this implies an AND semantics.

It is possible to have multiple triggers on a function, e.g., a slow period complemented with an
event trigger allows fast response when needed but a minimal execution rate.

9.2.5 Mode (from Behavior)

Generalizations

¶ EAElement (from Elements)

Description
Modes are a way to introduce various configurations in the system to account for different states of
the system, or of a hardware entity, or an application. The use of modes can be used to filter
different views of the model.

Modes are characterized by a Boolean condition provided as a String, which evaluates to true
when the Mode is active.

As far as behavior is concerned, Modes enable the logical organization of a set of triggers and
behaviors over a set of functions. Modes are referred to by both FunctionTriggers and
FunctionBehaviors (see FunctionTrigger and FunctionBehavior).

Modes can be further organized in mutually exclusive sets with ModeGroups (see that element).

Attributes

¶ condition : String [1]

A Boolean expression that characterizes the Mode, it evaluates to true when the Mode is
active. The syntax and grammar of this expression is unspecified.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Mode is active if and only if the condition is true.

file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

73 (244)

9.2.6 ModeGroup (from Behavior)

Generalizations

¶ TraceableSpecification (from Elements)

Description
ModeGroups serve as containers of Modes. The Modes in a ModeGroup are mutually exclusive.
This means that only one Mode of a ModeGroup is active at any point in time. A precondition in
the form of a Boolean expression is assigned to the ModeGroup so that ModeGroups can be
switched on and off as a whole.

Attributes

¶ precondition : String [1]

A Boolean expression that evaluates to true when the ModeGroup is active.

Associations

¶ mode : Mode [1..*] {composite}

The modes in this group.

Constraints
No additional constraints

Semantics
The ModeGroup defines a set of modes of which exactly one is active if precondition is true and
otherwise none is active.

9.2.7 TriggerPolicyKind (from Behavior) «enumeration»

Generalizations
None

Description
TriggerPolicyKind represents an enumeration for triggering policies.

Enumeration Literals

¶ EVENT

Triggering by event.

¶ TIME

Triggering by time.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The TriggerPolicyKind contains EVENT and TIME as possible triggering policies.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Mode

EAST-ADL Domain Model Specification version V2.1.12

74 (244)

Part IV Variability

This part covers variability extension to EAST-ADL.

EAST-ADL Domain Model Specification version V2.1.12

75 (244)

10 Variability

10.1 Overview

This package contains elements to express variability in the analysis architecture, design
architecture and implementation architecture. These abstraction levels in EAST-ADL will
sometimes be called the artifact levels.

Variability management in EAST-ADL is heavily based on feature modeling. However, since
feature modeling is used in EAST-ADL also for other purposes than variability management, the
feature modeling concepts were not defined in this extension but as part of the EAST-ADL core in
package FeatureModeling. For more details on this, please refer to packages FeatureModeling
and VehicleFeatureModeling.

Figure 12. Diagram depicting the organization of variability modeling elements.

EAST-ADL Domain Model Specification version V2.1.12

76 (244)

Figure 13. Diagram depicting the elements involved in artifact-level variation management.

Figure 14. Diagram depicting the elements for configuration modeling.

EAST-ADL Domain Model Specification version V2.1.12

77 (244)

10.2 Element Descriptions

10.2.1 ConfigurableContainer (from Variability)

Generalizations

¶ EAElement (from Elements)

Description
ConfigurableContainer is a marker class that marks an element identified by association
configurableElement as a configurable container of some variable content, i.e. VariableElements
and other, lower-level ConfigurableContainers. In order to describe the contained variability to the
outside world and to allow configuration of it, the ConfigurableContainer can have a public feature
model and an internal configuration decision model not visible from the outside, called "internal
binding".

In addition, the ConfigurableContainer can be used to extend the EAST-ADL variability approach
to other languages and standards by pointing from the ConfigurableContainer to the respective
(non EAST-ADL) element with association configurableElement. This provides the public feature
model and the ConfigurationDecisionModel to that non EAST-ADL element.

The variable content of a ConfigurableContainer is defined as all VariableElements and all other
ConfigurableContainers that are directly or indirectly contained in the Identifiable denoted by
association configurableElement. Instead of 'variable content' the term 'internal variability' may be
used.

Note that, according to this rule, the containment between a ConfigurableContainer and its
variable content, i.e. it's contained VariableElements and lower-level ConfigurableContainers, is
not directly defined between these meta-classes. Instead, the containment is defined by the
Identifiable pointed to by association configurableElement. For example, consider a FunctionType
"WiperSystem" containing two FunctionPrototypes "front" and "rear" both typed by FunctionType
"WiperMotor"; to make the wiper system configurable and the rear wiper motor optional, a
ConfigurableContainer is created that points to FunctionType "WiperSystem" (with association
configurableElement) and a VariableElement is created that points to FunctionPrototype "rear"
(with association optionalElement); the containment between the ConfigurableContainer and the
VariableElement is therefore not explicitly defined between these classes but instead only between
FunctionType "WiperSystem" and "FunctionPrototype" rear. In addition, the variability-related
visibility of "rear" can be changed with PrivateContent: by default the variability of "rear" will be
public and visible for direct configuration from the outside of its containing ConfigurableContainer,
i.e. "WiperSystem"; by defining a PrivateContent marker object pointing to the FunctionPrototype
"rear", this can be changed to private and this variability will not be visible from the outside of
"WiperSystem".

Attributes
No additional attributes

Associations

¶ publicFeatureModel : FeatureModel [0..1] {composite}

The local feature model of the ConfigurableContainer.

PublicFeatureModel represents internal variability of a ConfigurableContainer. Thus it can
be seen as being part of the public interface of a ConfigurableContainer.

¶ privateContent : PrivateContent [*] {composite}

¶ internalBinding : InternalBinding [0..1] {composite}

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23PrivateContent
file:///C:/Volvo/MAENAD/index.html%23InternalBinding

EAST-ADL Domain Model Specification version V2.1.12

78 (244)

The ConfigurationDecisionModel of the ConfigurableContainer.

¶ variationGroup : VariationGroup [*] {composite}

The variation groups that define certain dependencies and constraints between this
ConfigurableContainer's variable elements.

¶ configurableElement : Identifiable [1]

This association points to the actual element in the core model that is marked as a
configurable container of some variable content by this ConfigurableContainer. The
ConfigurableContainer in the variability extension can thus be seen as merely a marker
element (this marker mechanism follows the global guideline for relating the EAST-ADL
extensions to the core and is not specific to the variability extension).

Constraints
[1] Identifies one FunctionType or one HardwareComponentType.

[2] The publicFeatureModel is only allowed to contain Features (no VehicleFeatures).

Semantics
Marks the element identified by association configurableElement as a configurable container of
variable content (i.e. it contains VariableElements and/or other, lower-level
ConfigurableContainers) and optionally provides a public feature model and an internal
configuration decision model for it, thus providing configurability support for them.

10.2.2 ConfigurationDecision (from Variability)

Generalizations

¶ ConfigurationDecisionModelEntry (from Variability)

Description
ConfigurationDecision represents a single, atomized rule on how to configure the target feature
model(s) of the containing ConfigurationDecisionModel, depending on a given configuration of the
source feature model(s). Two examples are: "all North American (USA+Canada) cars except A-
Class have cruise control" (one ConfigurationDecision) or "all Canadian cars have adaptive cruise
control" (another ConfigurationDecision). All ConfigurationDecisions within a single
ConfigurationDecisionModel then specify how the target feature model(s) are to be configured
depending on the configuration of the source feature model(s).

Example:

Let's assume we have two FeatureModels: FM1 and FM2. FM1 has possible end-customer
decisions like USA, Canada, EU, Japan and A-Class, C-Class, etc. FM2 has another possible end-
customer decision such as CruiseControl, AdaptiveCruiseControl, RearWiper, RainSensor. End-
customer decisions in FM2 describe possible technical features of the delivered products. By way
of a set of ConfigurationDecisions it is now possible to define the configuration of FM2 (i.e. if there
is a RainSensor, etc.) dependent on a configuration of FM1. In other words, with a
ConfigurationDecision we can express something like: "If USA is selected in FM1 AND A-Class is
not selected in FM1, then CruiseControl will be selected in FM2".

The two most important constituents of a ConfigurationDecision are its 'criterion' and 'effect'. The
effect is a list of things to select and deselect in the target configuration(s), whereas the criterion
formulates a condition on the source configuration(s) under which this ConfigurationDecision's
effect will actually be applied to the target configuration(s). In the first example above, the criterion
would be "USA & not A-Class" and the effect would be "CruiseControl[+]".

Attributes

¶ criterion : String [0..1]

file:///C:/Volvo/MAENAD/index.html%23VariationGroup
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry

EAST-ADL Domain Model Specification version V2.1.12

79 (244)

The criterion is a logical expression on the source configuration(s) that states under which
condition the 'effect' will be applied to the target configuration(s). This attribute adheres to
the syntax and semantics of the VSL language.

Note that association "selectionCriterion" provides an alternative means for defining such
an expression in the form of an AUTOSAR mixed string expression. If both "criterion" and
"selectionCriterion" are defined, they are assumed to be semantically equivalent and a tool
may choose which one to use for variability and configuration management.

¶ effect : String [1]

States which Features are included/selected by the ConfigurationDecision in case the
logical expression in 'criterion' evaluates to true. Each of these Features needs to be
defined in one of the target feature models of the containing ConfigurationDecisionModel.
This attribute adheres to the syntax and semantics of the VSL language.

The Features are documented as a comma-separated list of strings. Each string has the
form <Name of FeatureModel>#<Name of Feature>. If a string is unique in all the source
and target FeatureModels of the ConfigurationDecisionModel containing this
ConfigurationDecision, then the first part (the FeatureModel name and the #-separator) can
be omitted. If a Feature name is not unique in a single FeatureModel, then a dot-notation
may be used to prepend the name(s) of predecessors in order to identify the Feature.

Configuring a cloned feature does not mean selecting or deselecting it but instead
instances of the cloned feature are created. Each such instance is provided with a name,
which thus becomes a part of the configuration (not the feature model). If several instances
are created for a single cloned feature, then the name is used to identify these instances.
For example, consider a cloned feature Wiper with cardinality [*]. A first configuration
decision might create an instance called "front" and a second might create another named
"rear"; a third configuration decision creating or otherwise referring to an instance called
"front" will denote the same instance as the first configuration decision. The name space
for these instance names is a particular feature configuration.

As an example for the syntax and semantics of the effect attribute, assume there are two
FeatureModels called FMa and FMb and they both contain the Features Wiper and
ClimateControl. In FMa (but not in FMb), Wiper and ClimateControl are both refined into
the child features Simple and Advanced. In addition, the wiper in FMa has a RainSensor.
To denote the RainSensor in FMa you can state:

FMa#Wiper.RainSensor

or simply write:

RainSensor

This is sufficient here, because the name of Feature RainSensor is unique within FMa and
within all FeatureModels referenced by the ConfigurationDecisionModel. In contrast, to
denote the advanced version of the climate control in FMa you can specify:

FMa#ClimateControl.Advanced

or simply:

ClimateControl.Advanced

but merely stating "Advanced" would not suffice because there are two features with that
name. Finally, to denote the wiper of feature model FMb you write:

FMb#Wiper

¶ isEquivalence : Boolean [1]

EAST-ADL Domain Model Specification version V2.1.12

80 (244)

Setting the attribute isEquivalence to true means that the features referred to in the
ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision (i.e.
no other ConfigurationDecision in the same ConfigurationDecisionModel may refer to these
features). This means that this ConfigurationDecision is the ONLY way in which these
features can be selected and therefore the usual logical implication that a
ConfigurationDecision represents is turned into a logical equivalence, hence the name: the
effect is applied to the target configurations if and only if the specified criterion holds.

When setting this attribute to true, the modeler can state that the target-side features in
this ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision,
i.e. no other ConfigurationDecision may influence these target-side features.

Associations

¶ selectionCriterion : SelectionCriterion [0..1] {composite}

The selectionCriterion is a logical expression on the source configuration(s) that states
under which condition the 'effect' will be applied to the target configuration(s). It is defined
as a mixed string expression.

Note that attribute ñcriterionò provides an alternative means for defining such an expression
in the form of a VSL expression. If both ñcriterionò and ñselectionCriterionò are defined, they
are assumed to be semantically equivalent and a tool may choose which one to use for
variability and configuration management.

¶ target : Identifiable [*] {ordered}

The target elements used in the mixed string expression.

Constraints
[1] Attribute "criterion" or association "selectionCriterion" (or both) must be defined.

Semantics
The ConfigurationDecision excludes or includes Features based on a given criterion.

The elements of the criterion and effect attributes may be identified through the target and the
source in the selectionCriterion. The criterion and effect attributes can contain a VSL expression
with qualified names of the identified elements.

10.2.3 ConfigurationDecisionFolder (from Variability)

Generalizations

¶ ConfigurationDecisionModelEntry (from Variability)

Description
ConfigurationDecisionFolder represents a grouping for ConfigurationDecisions.

Attributes
No additional attributes

Associations

¶ childEntry : ConfigurationDecisionModelEntry [*] {composite}

The child entries of the ConfigurationDecisionFolder.

Constraints
No additional constraints

Semantics
ConfigurationDecisionFolder is a grouping entity for ConfigurationDecisions.

file:///C:/Volvo/MAENAD/index.html%23SelectionCriterion
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry

EAST-ADL Domain Model Specification version V2.1.12

81 (244)

10.2.4 ConfigurationDecisionModel (from Variability) {abstract}

Generalizations

¶ EAElement (from Elements)

Description
A ConfigurationDecisionModel defines how to configure m target feature models, depending on a
given configuration of n source feature models, thus establishing a configuration-related link from
the n source feature models to the m target feature models (also called configuration link). With
the information captured in a ConfigurationDecisionModel it is then possible to transform a given
set of source configurations (one for every source feature model) into corresponding target
configurations (one for every target feature model).

For example, a ConfigurationDecisionModel can capture information such as "if feature 'S-Class' is
selected in the source feature model, then select feature 'RainSensor' in the target feature model"
or "if feature 'USA' is selected in the source feature model, then select feature 'CupHolder' in the
target feature model".

Note that in principle all ConfigurationDecisionModels have source / target feature models.
However, they are only defined explicitly for those used on vehicle level; for
ConfigurationDecisionModels used as an internal binding on FunctionTypes, the source and target
feature models are defined implicitly (cf. metaclass InternalBinding). In addition, in the special
case of FeatureConfiguration there is by definition no source and only a single target feature
model, which is defined explicitly (cf. metaclass FeatureConfiguration).

The configuration information captured in a ConfigurationDecisionModel is represented by
ConfigurationDecisions, each of which captures a single, atomized rule on how to configure the
target feature model(s) depending on a given configuration of the source feature model(s).

Attributes
No additional attributes

Associations

¶ rootEntry : ConfigurationDecisionModelEntry [*] {composite}

The root entries of the ConfigurationDecisionModel.

Constraints
No additional constraints

Semantics
See description.

10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract}

Generalizations

¶ EAElement (from Elements)

Description
ConfigurationDecisionModelEntry is the abstract base class for all content of a
ConfigurationDecisionModel.

Attributes

¶ isActive : Boolean = true [1]

If active==TRUE then the ConfigurationDecisionModelEntry is actually applied when
transforming source into target configurations; otherwise it will be ignored. With this
attribute, configuration decisions can (temporarily) be disabled without having to delete
them from the model.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

82 (244)

If this is set to FALSE for a ConfigurationDecisionFolder, then the entire contents of this
folder is deactivated, no matter to what value their isActive-attribute is set.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

10.2.6 ContainerConfiguration (from Variability)

Generalizations

¶ ConfigurationDecisionModel (from Variability)

Description
ContainerConfiguration defines an actual configuration of the variable content of a
ConfigurableContainer, in particular the selection or de-selection of contained VariableElements
and the configuration of the public feature models of other contained ConfigurableContainers. For
more details on the variable content of a ConfigurableContainer refer to the documentation of
meta-class ConfigurableContainer.

The ContainerConfiguration inherits from ConfigurationDecisionModel even though it does not
define a configuration link between feature models, similar to FeatureConfiguration. For more
information on this, refer to the documentation of meta-class FeatureConfiguration.

The source and target feature models of a ContainerConfiguration are defined implicitly: it always
has zero source feature models (as explained for FeatureConfiguration) and its target feature
models can be deduced from the ConfigurableContainer being configured by applying the same
rules as defined for InternalBinding.

Attributes
No additional attributes

Associations

¶ configuredContainer : ConfigurableContainer [1]

The ConfiguredContainer being configured by this ContainerConfiguration.

Constraints
No additional constraints

Semantics
The ContainerConfiguration specifies a concrete configuration of the variable content of a
ConfigurableContainer.

10.2.7 FeatureConfiguration (from Variability)

Generalizations

¶ ConfigurationDecisionModel (from Variability)

Description
FeatureConfiguration defines an actual configuration of a FeatureModel, in particular the selection
or de-selection of optional features, values for selected parameterized features, and instance
creations for cloned features.

file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel
file:///C:/Volvo/MAENAD/index.html%23ConfigurableContainer
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel

EAST-ADL Domain Model Specification version V2.1.12

83 (244)

Note that configurations of feature models are realized as a specialization of metaclass
ConfigurationDecisionModel. This is possible because a ConfigurationDecisionModel also
captures the configuration, i.e., of its target feature model(s); while in the standard case of
ConfigurationDecisionModel this target-side configuration depends on a given configuration of
source feature model(s), here we simply define a "constant" target-side configuration without
considering any source configurations. Therefore, the FeatureConfiguration meta-class has
additional constraints compared to the super-class ConfigurationDecisionModel: the
FeatureConfiguration has no source FeatureModel and only a single target FeatureModel, which
serves as the FeatureModel being configured, explicitly defined through association
'configuredFeatureModel'. And since there is no source feature model to which the criterion can
refer, all ConfigurationDecisions in a FeatureConfiguration must have "true" as their criterion.

Attributes
No additional attributes

Associations

¶ configuredFeatureModel : FeatureModel [1]

Constraints
No additional constraints

Semantics
The FeatureConfiguration specifies a concrete configuration of a feature model, in particular which
Features of this FeatureModel are selected or deselected.

10.2.8 InternalBinding (from Variability)

Generalizations

¶ ConfigurationDecisionModel (from Variability)

Description
The InternalBinding is the private, internal ConfigurationDecisionModel of the
ConfigurableContainer. It defines how the internal, lower-level variability of the
ConfigurableContainer is bound, i.e. configured, depending on a given configuration of the
ConfigurableContainer's public feature model. This way, the binding of this internal variability is
encapsulated and hidden behind the public feature model, which serves as a variability-related
interface.

Note that for this use case, the source and target feature models need not be defined explicitly
because they are deduced implicitly: the ConfigurableContainer's public feature model serves as
the (single) target feature model, and the source feature models are deduced from the
ConfigurableContainer's internal variability (esp. other, lower-level ConfigurableContainers which
are contained).

For a definition of the precise meaning of 'internal variability' (also called variable content) refer to
the documentation of meta-class ConfigurableContainer.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel

EAST-ADL Domain Model Specification version V2.1.12

84 (244)

10.2.9 PrivateContent (from Variability)

Generalizations

¶ EAElement (from Elements)

Description
PrivateContent is a marker class that marks the artifact element denoted by association
privateElement as private, i.e., it will not be presented to the outside of the containing
ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and PrivateContent work together.

Attributes
No additional attributes

Associations

¶ privateElement : Identifiable [1]

This association points to the actual element in the core model that is marked private by
this PrivateContent object. Instances of the PrivateContent meta-class in the variability
extension can thus be seen as merely a marker object (this marker mechanism follows the
global guideline for relating the EAST-ADL extensions to the core and is not specific to the
variability extension).

Constraints
[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePort or one ClampConnector.

Semantics
Marks the element identified by association privateElement as private. Otherwise the elements
visibility defaults to public.

10.2.10 ReuseMetaInformation (from Variability)

Generalizations

¶ TraceableSpecification (from Elements)

Description
ReuseMetaInformation represents the description information needed in the context of reuse. For
example a specific entity is only a short-time solution that is not intended to be reused. Also a
specific entity can only be reused for specific model ranges (that are not reflected in the product
model).

Attributes

¶ information : String [1]

The reuse information is stored in this attribute.

¶ isReusable : Boolean = true [1]

This Boolean attributes just says whether the owning VariableElement itself can essentially
be reused or not. Specific information or constraints on reuse are in the information
attribute.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

85 (244)

Semantics
The ReuseMetaInformation represents information that explains if and how the respective entity
can be reused.

10.2.11 SelectionCriterion (from Variability)

Generalizations

¶ EAExpression (from Values)

Description
A mixed string description, identifying the source elements. This means that the SelectionCriterion
could evaluate to True or False if a optional identifiable (feature or artifact) is referenced as target.
Or evaluate to a numerical if a FeatureParameter is referenced as target.

Attributes
No additional attributes

Associations

¶ source : Identifiable [*] {ordered}

The elements used in the mixed string expression.

Constraints
No additional constraints

Semantics
See description.

10.2.12 Variability (from Variability)

Generalizations

¶ Context (from Elements)

Description
The collection of variability descriptions, related feature models, and decision models. This
collection can be done across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

¶ productFeatureModel : FeatureModel [*] {composite}

This association points to zero or more feature models intended to be used on the vehicle
level in addition to the core technical feature model (cf. association technicalFeatureModel
in meta-class VehicleLevel).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on the vehicle level, which provide an orthogonal view on the core
technical feature model tailored to a particular purpose, for example an end-customer
feature model. However, there may be more and other use cases for feature models on
vehicle level. More detailed treatment of this is beyond the scope of the language
specification and can be found in the accompanying usage and methodology
documentations.

¶ decisionModel : VehicleLevelBinding [*] {composite}

¶ configuration : FeatureConfiguration [*] {composite}

¶ variableElement : VariableElement [*] {composite}

file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23VehicleLevelBinding
file:///C:/Volvo/MAENAD/index.html%23FeatureConfiguration
file:///C:/Volvo/MAENAD/index.html%23VariableElement

EAST-ADL Domain Model Specification version V2.1.12

86 (244)

¶ configurableContainer : ConfigurableContainer [*] {composite}

Constraints
No additional constraints

Semantics
See description.

10.2.13 VariableElement (from Variability)

Generalizations

¶ EAElement (from Elements)

Description
VariableElement is a marker class that marks an artifact element denoted by association
optionalElement as being optional, i.e. it will not be present in all configurations of the complete
system. A typical example is an optional FunctionPrototype.

In addition, the VariableElement can be used to extend the EAST-ADL variability approach to
other languages and standards by pointing from the VariableElement to the respective (non EAST-
ADL) element with association optionalElement, thus marking the non EAST-ADL element as
optional and providing configuration support within its containing ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and VariableElement work together.

Attributes
No additional attributes

Associations

¶ actualBindingTime : BindingTime [1] {composite}

Actual binding time attribute. Due to technical conditions it may occur that the realized
binding time of the feature/variation point differs from the originally intended binding time.
In this case one has to provide information about the actual binding time. In the rationales it
must be described what the reasons are for a (different) actual binding time.

¶ requiredBindingTime : BindingTime [0..1] {composite}

Required binding time attribute. Each feature/variation point must have a required binding
time attribute. The required binding time describes the binding time that the feature is
intended to have.

¶ reuseMetaInformation : ReuseMetaInformation [0..1] {composite}

Reuse-relevant meta-information for the element.

¶ optionalElement : Identifiable [1..*]

This association points to the actual element in the core model that is marked optional by
this VariableElement. The VariableElement in the variability extension can thus be seen as
merely a marker element (this marker mechanism follows the global guideline for relating
EAST-ADL extensions to the core and is not specific to the variability extension).

Constraints
[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePin or one ClampConnector.

Semantics
Marks the element identified by association optionalElement as optional.

file:///C:/Volvo/MAENAD/index.html%23ConfigurableContainer
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23ReuseMetaInformation
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

87 (244)

10.2.14 VariationGroup (from Variability)

Generalizations

¶ EAElement (from Elements)

Description
A VariationGroup defines a relation between an arbitrary number of VariableElements. It is
primarily intended for defining how these VariableElements may be combined (e.g. one requires
the other, alternative, etc.).

Attributes

¶ constraint : String [1]

Only defined iff kind=="custom". A constraint specifying how the VariableElements in the
variation group can be combined. This attribute adheres to the syntax and semantics of the
VSL language.

¶ kind : VariabilityDependencyKind [1]

The kind of the variation group (see enumeration VariationGroupKind).

Associations

¶ variableElement : VariableElement [1..*] {ordered}

Associated variable elements.

Constraints
No additional constraints

Semantics
Defines a dependency or constraint between the variable elements denoted by association
variableElement. The actual constraint is specified by attribute kind.

10.2.15 VehicleLevelBinding (from Variability)

Generalizations

¶ ConfigurationDecisionModel (from Variability)

Description
This class represents a binding on the vehicle level or coming from the vehicle level with explicitly
defined source and target feature models. The source feature models must be on vehicle level, but
the target feature models may be located on artifact level, e.g. the public feature model of the top-
level FunctionType in the FDA. This way, a VehicleLevelBinding may be used to bridge the gap
from vehicle level variability management to that on the artifact level.

Source feature models may be either the core technical feature model (as defined by association
technicalFeatureModel of meta-class VehicleLevel) or one of the optional product feature models
(as defined by association productFeatureModel of meta-class Variability in the variability
extension).

Attributes
No additional attributes

Associations

¶ sourceVehicleFeatureModel : FeatureModel [*] {ordered}

¶ targetFeatureModel : FeatureModel [*] {ordered}

Constraints
[1] The sourceVehicleFeatureModels shall only contain VehicleFeatures.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23VariableElement
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23FeatureModel

EAST-ADL Domain Model Specification version V2.1.12

88 (244)

[2] The sourceVehicleFeatureModels shall be different from the targetFeatureModels.

Semantics
See description.

EAST-ADL Domain Model Specification version V2.1.12

89 (244)

Part V Requirements

This part covers the Requirements extension to EAST-ADL, which includes requirements, use
cases and Verification and Validation.

EAST-ADL Domain Model Specification version V2.1.12

90 (244)

11 Requirements

11.1 Overview

A requirement expresses a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification or other formally imposed
properties.

Requirements can be introduced in different phases of the development process for different
reasons. They could be introduced by marketing people, control engineers, system engineers,
software engineers, Driver/OS developers, basic software developers or hardware engineers. This
leads to the fact that requirements have many sources, and requirements are of many types (at
different levels of detail) and have several relations between them. Under these conditions the
number of requirements can become quickly unmanageable if appropriate management does not
exist. Note that, requirements can change during the project development and the changes should
be taken into account. Requirements are organized hierarchically through several kinds of
refinement relations.

EAST-ADL has constructs that deal with these problems. Some of these constructs deals with
general issues in software development and have been already addressed in the past by general
processes. As done for the structure part of EAST-ADL, the requirements part will be compliant
with UML2. The EAST-ADL adapts existing concepts whenever possible and develops new ones
otherwise.

Elements inspired by SysML are Requirement, Satisfy, Refine, DeriveRequirement, and Verify.

Figure 15. Diagram for Requirements overview.

EAST-ADL Domain Model Specification version V2.1.12

91 (244)

Figure 16. Diagram for Relationships including Requirement.

Figure 17. Diagram for Requirements organization.

11.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

92 (244)

11.2.1 DeriveRequirement (from Requirements)

Generalizations

¶ RequirementsRelationship (from Requirements)

Description
The DeriveRequirement is a relationship metaclass, which signifies a dependency relationship
between two sets of Requirements, showing the relationship when a set of derived client
Requirement (client requirement) is derived from a set of Requirements (supplier requirement).

Attributes
No additional attributes

Associations

¶ derivedFrom : Requirement [1..*]

The set of requirements that the client requirement are derived from.

¶ derived : Requirement [1..*]

The set of requirements that are derived from the supplier requirement.

Constraints
No additional constraints

Semantics
The DeriveRequirement metaclass signifies a derived/derived by relationship between
Requirements, where the modification of the supplier Requirement may impact the derived client
Requirement.

11.2.2 OperationalSituation (from Requirements)

Generalizations

¶ TraceableSpecification (from Elements)

Description
An operational situation is a state, condition or scenario in the environment that may influence the
vehicle. The Operational Situation may be further detailed by a functional definition in the
EnvironmentModel.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
OperationalSituation represents a state, condition or scenario that is external to the vehicle.

11.2.3 QualityRequirement (from Requirements)

Generalizations

¶ Requirement (from Requirements)

Description
QualityRequirements or non-functional requirements are used to introduce externally visible
properties of the system considered as a whole. They specify criteria that can be used to judge the

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

93 (244)

operation of a system. As opposed to a functional requirement specifying what a system is
supposed to do, the non-functional requirements define how a system is supposed to be.

The attribute qualityRequirementType allows a more specific classification.

Attributes

¶ kind : QualityRequirementKind [1]

Associations
No additional associations

Constraints
No additional constraints

Semantics
A QualityRequirement element represents a requirement which is non-functional.

11.2.4 QualityRequirementKind (from Requirements) «enumeration»

Generalizations
None

Description
QualityRequirementKind represents an enumeration with enumeration literals describing various
types of quality requirements.

Enumeration Literals

¶ availability

The requirement is related to availability, the readiness for correct service.

¶ confidentiality

The requirement is related to confidentiality.

¶ configurability

The requirement is related to the ability to configure the functionality.

¶ ergonomy

The requirement is related to the ergonomy of the functionality.

¶ humanMachineInterface

The requirement is related to the human-machine interface.

¶ integrity

The requirement is related to integrity, absence of improper system alteration.

¶ maintainability

The requirement is related to maintainability, the ability to undergo modifications and
repairs.

¶ other

The requirement is a quality requirement with a general classification.

¶ performance

The requirement is related to performance in general.

¶ reliability

The requirement is related to reliability, the continuity of correct service.

EAST-ADL Domain Model Specification version V2.1.12

94 (244)

¶ safety

The requirement is related to safety, the absence of catastrophic consequences on the
user(s) and the environment.

¶ security

The requirement is related to security.

¶ timing

The requirement is related to timing.

Associations
No additional associations

Constraints
No additional constraints

Semantics
QualityRequirementKind represents the kind of QualityRequirement given by the definition of the
respective Enumeration Literal.

11.2.5 Refine (from Requirements)

Generalizations

¶ RequirementsRelationship (from Requirements)

Description
The Refine is a relationship metaclass, which signifies a dependency relationship between
Requirements and EAElements, showing the relationship when a client EAElement refines the
supplier Requirement.

Attributes
No additional attributes

Associations

¶ refinedRequirement : Requirement [1..*]

List of refined Requirements.

Dependencies

¶ refinedBy : EAElement [1..*]

«instanceRef»

Constraints
[1] The property refinedBy must not have the types Requirement or RequirementContainer.

Semantics
The Refine metaclass signifies a refined requirement/refined by relationship between a
Requirement and an EAElement, where the modification of the supplier Requirement may impact
the refining client EAElement. The Refine metaclass implies the semantics that the refining client
EAElement is not complete, without the supplier Requirement.

11.2.6 Requirement (from Requirements)

Generalizations

¶ TraceableSpecification (from Elements)

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

95 (244)

Description
The Requirement represents a capability or condition that must (or should) be satisfied. A
Requirement can also specify an informal constraint, e.g. "The development of the component X
must be according to the standard Y", or "The realization of this function as a software component
must adhere to the scope and external interface as specified by this function". It will be used to
unite the common properties of specific requirement types. A Requirement may either be directly
associated with a Context (by inheriting from TraceableSpecification) or it may be included in a
RequirementsHierarchy, which represents a larger unit or module of specification information.

The traceability between Requirement entities and other specification or design entities will be
ensured by the relationship dependencies described in the Infrastructure part of this specification.

Attributes

¶ formalism : String [0..1]

Specifies the language used for the requirement statement.

¶ url : String [0..1]

Reference to possible external file containing the requirement statement.

Associations

¶ mode : Mode [*]

The mode where this requirement is valid.

Constraints
No additional constraints

Semantics
The string in the text attribute inherited from TraceableSpecification is the capability or condition
that applies to the Identifiable that is associated to the Requirement through the Satisfy relation.

11.2.7 RequirementsHierarchy (from Requirements)

Generalizations

¶ TraceableSpecification (from Elements)

Description
RequirementsHierarchy represents a larger unit or module of specification information. It is used to
bundle several Requirements which are semantically related to each other. Thus, to preserve the
ordering of requirement specification objects, the order of child hierarchies is very important here.

The RequirementsHierarchy with its reference to Requirement is the basic element for structuring
requirement information into a forest structure.

RequirementsHierarchy correponds to ReqIF SpecHierarchy.

Attributes
No additional attributes

Associations

¶ containedRequirement : Requirement [0..1]

Requirement referenced by the virtual RequirementsHierarchy.

¶ childHierarchy : RequirementsHierarchy [*] {ordered} {composite}

Sub hierarchies of a requirements hierarchy. Sub hierarchies may have references (each
time max. one) to requirement specification objects. To preserve the original ordering of
requirement specification objects, the ordering of sub hierarchies is very important here.

file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy

EAST-ADL Domain Model Specification version V2.1.12

96 (244)

Constraints
[1] Only non-root RequirementsHierarchy which is contained in another RequirementHierarchy are
allowed to reference a Requirement.

Semantics
RequirementsHierarchy organizes Requirements in groups. The semantics of the group is user-
defined.

11.2.8 RequirementsLink (from Requirements)

Generalizations

¶ RequirementsRelationship (from Requirements)

Description
RequirementsLink represents a relation between two or more Requirements. Source and target
Requirements of the relation are distinguished, which means that the relation is directed (from
source to target). If such a distinction does not make sense, then use a
RequirementsRelationGroup instead.

The standard case will be a relation with one source and one target Requirement. However, it is
possible to have several source and/or several target Requirements so that general relations can
be expressed with instances of this metaclass.

The semantic of a concrete Requirement relation can be provided by the modeler. In particular,
three ways are conceivable:

(1) The user attributes of the relation can be used to specify its meaning, for example with a user
attribute called "relationType" which is set to values such as "needs" or "excludes".

(2) The UserAttributeElementType can be used. Certain types will be used for certain relation
semantics.

(3) RequirementsRelationGroups can be used, i.e. all relations with an "excludes" meaning are put
in one relation group and all with a "needs" meaning are put in another.

Attributes

¶ isBidirectional : Boolean [1]

When set to true, the semantic relation represented by this instance of
RequirementRelation does not only apply to the direction from source to target (as always)
but also in the opposite direction.

Note that this means that the relation becomes directed in both directions but NOT
undirected. To express an undirected association use a RequirementsRelationGroup.

Associations

¶ target : Requirement [1..*]

The requirement(s) at which this relation ends.

¶ source : Requirement [1..*]

The requirement(s) at which this relation starts.

Constraints
No additional constraints

Semantics
The RequirementsLink defines a relation from a set of source and target requirements. The
isBidirectional attribute defines whether the relation is bidirectional. The semantics of the relation is
user-defined.

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

97 (244)

11.2.9 RequirementsModel (from Requirements)

Generalizations

¶ Context (from Elements)

Description
The collection of requirements, their relationships, and use cases. This collection can be done
across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

¶ requirementsRelationshipGroup : RequirementsRelationshipGroup [*] {composite}

¶ requirement : Requirement [*] {composite}

¶ requirementsHierarchy : RequirementsHierarchy [*] {ordered} {composite}

Root elements of requirement hierarchies.

¶ operationalSituation : OperationalSituation [*] {composite}

¶ requirementType : UserElementType [*] {composite}

User element types contained in this RequirementModel. This allows for the introduction of
additional user element types to be used within this RequirementsModel only. These are
additional in that they are used in addition to the user attribute definitions which are
provided globally for the entire EAST-ADL repository.

These user element types given by this association correspond to ReqIF's SpecType.

¶ useCase : UseCase [*] {composite}

Constraints
[1] The validFor attribute of the UserElementType shall be "Requirement".

Semantics
The RequirementsModel is a container element for requirement-related elements.

11.2.10 RequirementsRelationship (from Requirements) {abstract}

Generalizations

¶ Relationship (from Elements)

Description
Semantics:

RequirementsRelationship is an abstract association. The semantics is defined by its
specializations.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
RequirementsRelationship is an abstract association. The semantics is defined by its
specializations.

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationshipGroup
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy
file:///C:/Volvo/MAENAD/index.html%23OperationalSituation
file:///C:/Volvo/MAENAD/index.html%23UserElementType
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23Relationship

EAST-ADL Domain Model Specification version V2.1.12

98 (244)

11.2.11 RequirementsRelationshipGroup (from Requirements)

Generalizations

¶ TraceableSpecification (from Elements)

Description
RequirementsRelationGroup represents a group of relations between Requirements.

RequirementsRelationGroup corresponds to ReqIF RelationGroup.

Attributes
No additional attributes

Associations

¶ requirementsRelationship : RequirementsRelationship [1..*]

The relations that are grouped by this relation group. Note that this is not a containment
association, i.e., a single relation may be grouped by several RequirementRelationGroups.

Constraints
No additional constraints

Semantics
RequirementsRelationGroup represents a group of RequirementsRelations. The semantics of this
grouping is defined by the user.

11.2.12 Satisfy (from Requirements)

Generalizations

¶ RequirementsRelationship (from Requirements)

Description
The Satisfy is a relationship metaclass, which signifies the relationship between a Requirement
and an element intended to satisfy the Requirement.

Attributes
No additional attributes

Associations

¶ satisfiedRequirement : Requirement [*]

List of Requirements that are satisfied by the client ADLElement or satisfied by the client
AUTOSAR element.

¶ satisfiedUseCase : UseCase [*]

List of satisfied UseCases that are satisfied by the client EAElements or satisfied by the
client AUTOSAR elements.

Dependencies

¶ satisfiedBy : Identifiable [1..*]

«instanceRef»

Constraints
[1] The EAElement in the association satisfiedBy may not be a Requirement or
RequirementContainer.

[2] An element of type Satisfy is only allowed to have associations to either elements of type
UseCase (see satisfiedUseCase) or elements of type Requirement (see satisfiedRequirement).
Not both at the same time!

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

99 (244)

Semantics
The Satisfy metaclass signifies a satisfied requirement/satisfied by relationship between a set of
Requirements and a set of satisfying entities, where the modification of the supplier Requirements
may impact the satisfying client entities. The Satisfy metaclass implies the semantics that the
satisfying client entities are not complete without the supplier Requirement.

EAST-ADL Domain Model Specification version V2.1.12

100 (244)

12 UseCases

12.1 Overview

The use case package contains elements for defining the required usage of a system. Typically,
UseCases are used to capture the functional requirements of a system, that is, what a system is
supposed to do. In order to organize use cases in an EAST-ADL requirements hierarchy, a Refine
relation can be used to link the UseCase to a requirement.

To enable a rich and logical organization of UseCases, specific relationships are introduced to
enable the extension, inclusion or redefinition of existing UseCases.

The UseCase concept is explicitly linked to two main elements in the rest of the language: 1) the
Satisfy relationship from Requirements, which links system entities, and the Requirement or the
UseCase they satisfy; 2) the HazardousEvent concept from Dependability, which links a particular
Hazard to a specific situation, depicted as a UseCase.

Figure 18. Diagram for UseCase.

12.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

101 (244)

12.2.1 Actor (from UseCases)

Generalizations

¶ TraceableSpecification (from Elements)

Description
Actor represents a type of role played by an entity that interacts with the UseCase, e.g. by
exchanging signals and data, but which is external to the subject, i.e., in the sense that an
instance of an Actor is not a part of the instance of its corresponding subject. Actors may
represent roles played by human users, external hardware, or other subjects. Note that an Actor
does not necessarily represent a specific physical entity but merely a particular facet (i.e., "role") of
some entity that is relevant to the specification of its associated UseCases. Thus, a single physical
instance may play the role of several different Actors and, conversely, a given Actor may be
played by multiple different instances. Since an Actor is external to the subject, it is typically
defined in the same classifier or package that incorporates the subject classifier.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Actor element represents entities that interacts with a UseCase.

12.2.2 Extend (from UseCases)

Generalizations

¶ Relationship (from Elements)

Description
Extend represents the specification that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase. The extension takes place at one or more
specific ExtensionPoints defined in the extended UseCase. Note, however, that the extended
UseCase is defined independently of the extending UseCase and is meaningful independently of
the extending UseCase. On the other hand, the extending UseCase typically defines behavior that
may not necessarily be meaningful by itself. Instead, the extending UseCase defines a set of
modular behavior increments that augment an execution of the extended UseCase under specific
conditions. Note that the same extending UseCase can extend more than one UseCases.
Furthermore, an extending UseCase may itself be extended.

Attributes
No additional attributes

Associations

¶ extensionLocation : ExtensionPoint [1..*]

Identifies a point where the behavior of a UseCase can be augmented with elements of
another (extending) UseCase.

¶ extendedCase : UseCase [1]

The UseCase that is extended.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23ExtensionPoint
file:///C:/Volvo/MAENAD/index.html%23UseCase

EAST-ADL Domain Model Specification version V2.1.12

102 (244)

Semantics
An Extension relation identifies an extension UseCase which extends an extendedCase UseCase.

12.2.3 ExtensionPoint (from UseCases)

Generalizations

¶ RedefinableElement (from UseCases)

Description
ExtensionPoint represents a feature of a UseCase that identifies a point where the behavior of a
UseCase can be augmented with elements of another (extending) UseCase.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
ExtensionPoint identifies the point where the useCase UseCase ca be extended.

12.2.4 Include (from UseCases)

Generalizations

¶ Relationship (from Elements)

Description
Include is a specialization of the Relationship and represents a relationship between two
UseCases, implying that the behavior of the included UseCase is inserted into the behavior of the
including UseCase. The including UseCase may only depend on the result (value) of the included
UseCase. This value is obtained as a result of the execution of the included UseCase. Note that
the included UseCase is not optional and is always required for the including UseCase to execute
correctly.

Attributes
No additional attributes

Associations

¶ addition : UseCase [1]

UseCase providing behavior to include.

Constraints
No additional constraints

Semantics
The Include relationship identifies an addition UseCase, which is inserted in the including
UseCase.

12.2.5 RedefinableElement (from UseCases) {abstract}

Generalizations

¶ EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23RedefinableElement
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

103 (244)

Description
RedefinableElement represents an element that, when defined in the context of a classifier, can be
redefined more specifically or differently in the context of another classifier that specializes
(directly or indirectly) the context classifier

A redefinable element is a named element that can be redefined in the context of a generalization.

The RedefinableElement is an abstract metaclass.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
RedefinableElementrepresents an element that can be redefined in the context of another
classifier. Semantics is given by its specializations.

12.2.6 UseCase (from UseCases)

Generalizations

¶ TraceableSpecification (from Elements)

Description
A UseCase specifies a usage of a system. Typically, they are used to capture the functionality of a
system, that is, what a system is supposed to do.

Attributes
No additional attributes

Associations

¶ extensionPoint : ExtensionPoint [*] {composite}

An ExtensionPoint identifies a point where the behavior of a UseCase can be augmented
with elements of another (extending) UseCase.

¶ include : Include [*] {composite}

Include is a Relationship between two UseCases; the behavior of the included UseCase is
inserted into the behavior of the including UseCase.

¶ extend : Extend [*] {composite}

This Relationship specifies that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase.

Constraints
No additional constraints

Semantics
A UseCase identifies a usage of its corresponding system. ExtensionPoint identifies where the use
case can be extended with extend UseCases and include identifies UseCases inserted in the
including UseCase.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23ExtensionPoint
file:///C:/Volvo/MAENAD/index.html%23Include
file:///C:/Volvo/MAENAD/index.html%23Extend

EAST-ADL Domain Model Specification version V2.1.12

104 (244)

13 VerificationValidation

13.1 Overview

Many different verification and validation (V&V) techniques, methods, and tools are applied during
the development of electrical/electronic systems. Different techniques are applicable at different
abstraction levels. Also, choosing a technique depends on the properties being validated and/or
verified. Furthermore, each partner in a project may develop and employ his own V&V processes
and activities. Hence it is impossible for EAST-ADL to model all the objects that can be required by
all the possible V&V techniques. As a consequence, EAST-ADL provides the means for planning,
organizing and describing V&V activities on a fairly abstract level, and defines the links between
those V&V activities, the satisfied and verified requirements, and the objects modeling the system
(Functional Analysis Architecture, Functional components, Logical Tasks, etc.). EAST-ADL
describes the common parts of all V&V techniques, including: the results expected from the V&V
activities, the actual results which were obtained when applying the V&V techniques, and how the
V&V activities are constrained. Information that is specific to an individual V&V technique is not
described in EAST-ADL, but a place for storing this information is provided.

Individual V&V techniques may be used once or at several stages during an overall V&V effort.
Some of them are specific to one modeling design stage; others can be applied at various design
stages.

A set of V&V techniques and activities is necessary in order to completely verify and validate a
given system. Often these techniques and activities are employed and performed by many
different teams and departments, even by different companies. This situation demands the
planning and organization of all V&V related information.

A very important aspect of V&V support in EAST-ADL is the distinction between abstract and
concrete V&V information:

(1) At an abstract level, verification and validation information is defined without referring to a
concrete testing environment and without specifying stimuli or the expected outcome of a
particular VVProcedure on a detailed technical level.

(2) On the concrete level, verification and validation information specifies a concrete testing
environment and provides all necessary details for testing, e.g. stimuli and expected outcomes, on
a concrete technical level applicable to that testing environment.

Using a "what vs. how" definition of requirements one could say: the abstract level defines what
needs to be done to verify and validate a certain system, but not precisely how this is done.
Conversely, the concrete level defines the precise technical details of particular testing
environments. The abstract VVCases and VVProcedures for a particular system form a "to-do"-list,
which describes what needs to be done when actually testing the system with a concrete testing
environment, but in a form applicable to all conceivable testing environments.

EAST-ADL Domain Model Specification version V2.1.12

105 (244)

Figure 19. Diagram for Verification & Validation.

Figure 20. Diagram for Verification and Validation Organization.

EAST-ADL Domain Model Specification version V2.1.12

106 (244)

13.2 Element Descriptions

13.2.1 VerificationValidation (from VerificationValidation)

Generalizations

¶ Context (from Elements)

Description
The collection of verification and validation elements. This collection can be used across the
EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

¶ vvTarget : VVTarget [*] {composite}

¶ vvCase : VVCase [*] {composite}

The elements that are being verified and validated by this VVCase.

Usually this will be a subset of those elements which are realized by the VVTarget(s) of the
VVCase; but this need not always be the case.

The difference between the vvSubjects and the entities which are realized by the case's
VVTarget(s), is that the vvSubjects are related to the primary, overall objective of the
ConcreteVVCase, while the realized entities can comprise more than these. For example:

(a) For technical reasons additional entities need to be realized only to permit the testing of
the entities of actual interest or

(b) If a VVTarget is reused among many ConcreteVVCases and therefore realizes more
entities than are actually being tested by any single ConcreteVVCase.

¶ verify : Verify [*] {composite}

Constraints
No additional constraints

Semantics
VerificationValidation is a container element for a set of related vvTarget and vvCase elements
and verify relationships.

13.2.2 Verify (from VerificationValidation)

Generalizations

¶ RequirementsRelationship (from Requirements)

Description
Verify is a relationship metaclass, which signifies a dependency relationship between a
Requirement and a VVCase. It shows the relationship when a client VVCase and an optional
abstract VVProcedure verifies the supplier Requirement.

Attributes
No additional attributes

Associations

¶ verifiedRequirement : Requirement [1..*]

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23VVTarget
file:///C:/Volvo/MAENAD/index.html%23VVCase
file:///C:/Volvo/MAENAD/index.html%23Verify
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement

