

EAST-ADL

Domain Model Specification

Version V2.1.12

EAST-ADL Domain Model Specification version V2.1.12

2 (244)

Revision History

Version Date Reason

1.02 2004-06-30 EAST-ADL developed in the ITEA EAST-EEA project.

2.0 2008-03-20 EAST-ADL2 developed in the EC FP6 project ATESST.
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-
Specification_2008-02-29.pdf

2.1 2010-06-30 Updated version from the EC FP7 project ATESST2 with
Timing concepts from ITEA TIMMO.

2.1.11 2013-05-28 Updated version from the EC FP7 project MAENAD with
Timing concepts from ITEA2 TIMMO-2-USE.

2.1.12 2013-11-28 Minor update of documentation texts, removal of some
textual constraints, properties made visible: internalFailure
and consecutiveTimeCondition.

Copyright © 2011-2013, EAST-ADL Association, www.east-adl.info

Copyright © 2000-2004, AUDI AG

Copyright © 2000-2004, BMW AG

Copyright © 2000-2004, 2008-2010, Centro Ricerche Fiat

Copyright © 2007-2010, Continental Automotive

Copyright © 2000-2008, DaimlerChrysler AG

Copyright © 2006-2010, Delphi/Mecel

Copyright © 2000-2008, ETAS GmbH

Copyright © 2006-2010, Mentor Graphics Hungary

Copyright © 2000-2004, OPEL GmbH

Copyright © 2000-2004, PSA

Copyright © 2000-2004, Renault

Copyright © 2000-2004, Robert Bosch GmbH

Copyright © 2000-2007, Siemens VDO Automotive SAS

Copyright © 2000-2004, Valeo

Copyright © 2000-2004, Vector

Copyright © 2006-2008, Volvo Car Corporation

Copyright © 2000-2010, Volvo Technology AB

Copyright © 2006-2010, VW/Carmeq

Copyright © 2000-2004, ZF

Copyright © 2000-2010, CEA-LIST

Copyright © 2000-2004, INRIA

Copyright © 2006-2010, Kungliga Tekniska Högskolan

Copyright © 2000-2004, LORIA

Copyright © 2000-2004, Paderborn Univerisity-C-LAB

Copyright © 2000-2004, Technical University of Darmstadt

Copyright © 2000-2010, Technische Universität Berlin

Copyright © 2008-2010, University of Hull

http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.east-adl.info/

EAST-ADL Domain Model Specification version V2.1.12

3 (244)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a language specification developed by an informal partnership of
vendors and users, with input from additional reviewers and contributors. This document does not
represent a commitment to implement any portion of this specification in any company’s products.
See the full text of this document for additional disclaimers and acknowledgments. The information
contained in this document is subject to change without notice.

This specification is provided by the copyright holders and contributors "as is" and any expressed
or implied warranties, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall the copyright owner or
contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use
of this specification, even if advised of the possibility of such damage.

EAST-ADL Domain Model Specification version V2.1.12

4 (244)

Table of Contents – Overview

Revision History .. 2

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES ... 3

Table of Contents – Overview .. 4

Table of Contents - Complete ... 6

Part I Introduction ... 14

1 Language Formalism .. 16

2 Abbreviations .. 18

Part II Structural Constructs ... 19

3 SystemModeling ... 20

4 FeatureModeling ... 25

5 VehicleFeatureModeling ... 35

6 FunctionModeling ... 40

7 HardwareModeling .. 55

8 Environment .. 64

Part III Behavioral Constructs ... 66

9 Behavior .. 67

Part IV Variability .. 74

10 Variability .. 75

Part V Requirements .. 89

11 Requirements ... 90

12 UseCases ... 100

13 VerificationValidation .. 104

Part VI Timing ... 112

14 Timing ... 113

15 TimingConstraints ... 118

16 Events ... 135

Part VII Dependability ... 140

17 Dependability .. 141

18 ErrorModel .. 150

19 SafetyConstraints ... 159

20 SafetyRequirement ... 162

21 SafetyCase ... 165

Part VIII Generic Constraints .. 170

22 GenericConstraints ... 171

Part IX Infrastructure .. 175

23 Datatypes .. 176

24 Values ... 183

25 Elements ... 187

26 UserAttributes ... 196

Part X Annexes ... 201

27 Annex A: Notation ... 202

EAST-ADL Domain Model Specification version V2.1.12

5 (244)

28 Annex B: Needs .. 206

29 Annex C: BehaviorDescription .. 212

30 BehaviorDescription .. 213

31 AttributeQuantificationConstraint .. 221

32 ComputationConstraint ... 225

33 TemporalConstraint .. 230

34 Index ... 237

EAST-ADL Domain Model Specification version V2.1.12

6 (244)

Table of Contents - Complete

Revision History .. 2

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES ... 3

Table of Contents – Overview .. 4

Table of Contents - Complete ... 6

Part I Introduction ... 14

1 Language Formalism .. 16

1.1 Levels of Formalism ... 16

1.2 Specification Structure .. 16
1.2.1 Overview ... 16
1.2.2 Element Descriptions .. 16

2 Abbreviations .. 18

Part II Structural Constructs ... 19

3 SystemModeling ... 20

3.1 Overview ... 20

3.2 Element Descriptions .. 20
3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElement» .. 20
3.2.2 DesignLevel (from SystemModeling) «atpStructureElement» .. 21
3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement» 22
3.2.4 SystemModel (from SystemModeling) «atpStructureElement» .. 23
3.2.5 VehicleLevel (from SystemModeling) «atpStructureElement» ... 23

4 FeatureModeling ... 25

4.1 Overview ... 25

4.2 Element Descriptions .. 25
4.2.1 BindingTime (from FeatureModeling) ... 26
4.2.2 BindingTimeKind (from FeatureModeling) «enumeration» ... 26
4.2.3 Feature (from FeatureModeling) «atpStructureElement» ... 28
4.2.4 FeatureConstraint (from FeatureModeling) .. 29
4.2.5 FeatureGroup (from FeatureModeling) ... 30
4.2.6 FeatureLink (from FeatureModeling) .. 30
4.2.7 FeatureModel (from FeatureModeling) «atpStructureElement» ... 31
4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}... 32
4.2.9 VariabilityDependencyKind (from FeatureModeling) «enumeration» 33

5 VehicleFeatureModeling ... 35

5.1 Overview ... 35

5.2 Element Descriptions .. 35
5.2.1 DeviationAttributeSet (from VehicleFeatureModeling) .. 36
5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»............................... 37
5.2.3 VehicleFeature (from VehicleFeatureModeling) ... 38

6 FunctionModeling ... 40

6.1 Overview ... 40

6.2 Element Descriptions .. 41
6.2.1 AllocateableElement (from FunctionModeling) {abstract} ... 41
6.2.2 Allocation (from FunctionModeling) .. 42

EAST-ADL Domain Model Specification version V2.1.12

7 (244)

6.2.3 AnalysisFunctionPrototype (from FunctionModeling) ... 42
6.2.4 AnalysisFunctionType (from FunctionModeling) ... 42
6.2.5 BasicSoftwareFunctionType (from FunctionModeling) ... 43
6.2.6 ClientServerKind (from FunctionModeling) «enumeration» .. 43
6.2.7 DesignFunctionPrototype (from FunctionModeling) ... 44
6.2.8 DesignFunctionType (from FunctionModeling) ... 44
6.2.9 EADirectionKind (from FunctionModeling) «enumeration» ... 45
6.2.10 FunctionalDevice (from FunctionModeling) .. 45
6.2.11 FunctionAllocation (from FunctionModeling)... 46
6.2.12 FunctionClientServerInterface (from FunctionModeling) «atpType» .. 47
6.2.13 FunctionClientServerPort (from FunctionModeling) .. 47
6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement» 47
6.2.15 FunctionFlowPort (from FunctionModeling) .. 48
6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype» .. 49
6.2.17 FunctionPowerPort (from FunctionModeling) ... 50
6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype» 50
6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType» .. 51
6.2.20 HardwareFunctionType (from FunctionModeling) .. 52
6.2.21 LocalDeviceManager (from FunctionModeling) .. 53
6.2.22 Operation (from FunctionModeling) .. 53
6.2.23 PortGroup (from FunctionModeling) ... 54

7 HardwareModeling .. 55

7.1 Overview ... 55

7.2 Element Descriptions .. 55
7.2.1 Actuator (from HardwareModeling) ... 55
7.2.2 AllocationTarget (from HardwareModeling) {abstract} .. 56
7.2.3 CommunicationHardwarePin (from HardwareModeling) .. 56
7.2.4 ElectricalComponent (from HardwareModeling) «atpType» ... 57
7.2.5 HardwareBusKind (from HardwareModeling) «enumeration» .. 57
7.2.6 HardwareComponentPrototype (from HardwareModeling) «atpPrototype» 58
7.2.7 HardwareComponentType (from HardwareModeling) «atpType» .. 58
7.2.8 HardwareConnector (from HardwareModeling) «atpStructureElement» 59
7.2.9 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement» 59
7.2.10 HardwarePort (from HardwareModeling) «atpStructureElement» .. 60
7.2.11 HardwarePortConnector (from HardwareModeling) «atpStructureElement» 60
7.2.12 IOHardwarePin (from HardwareModeling) ... 60
7.2.13 IOHardwarePinKind (from HardwareModeling) «enumeration» ... 61
7.2.14 Node (from HardwareModeling) ... 61
7.2.15 PowerHardwarePin (from HardwareModeling) ... 62
7.2.16 Sensor (from HardwareModeling) ... 62

8 Environment .. 64

8.1 Overview ... 64

8.2 Element Descriptions .. 64
8.2.1 ClampConnector (from Environment) «atpStructureElement» ... 64
8.2.2 Environment (from Environment) .. 65

Part III Behavioral Constructs ... 66

9 Behavior .. 67

9.1 Overview ... 67

EAST-ADL Domain Model Specification version V2.1.12

8 (244)

9.2 Element Descriptions .. 68
9.2.1 Behavior (from Behavior) .. 68
9.2.2 FunctionBehavior (from Behavior) .. 69
9.2.3 FunctionBehaviorKind (from Behavior) «enumeration» .. 70
9.2.4 FunctionTrigger (from Behavior) ... 71
9.2.5 Mode (from Behavior) ... 72
9.2.6 ModeGroup (from Behavior) ... 73
9.2.7 TriggerPolicyKind (from Behavior) «enumeration» ... 73

Part IV Variability .. 74

10 Variability .. 75

10.1 Overview ... 75

10.2 Element Descriptions .. 77
10.2.1 ConfigurableContainer (from Variability) ... 77
10.2.2 ConfigurationDecision (from Variability) ... 78
10.2.3 ConfigurationDecisionFolder (from Variability) ... 80
10.2.4 ConfigurationDecisionModel (from Variability) {abstract} ... 81
10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract} ... 81
10.2.6 ContainerConfiguration (from Variability) .. 82
10.2.7 FeatureConfiguration (from Variability) ... 82
10.2.8 InternalBinding (from Variability) ... 83
10.2.9 PrivateContent (from Variability) ... 84
10.2.10 ReuseMetaInformation (from Variability) .. 84
10.2.11 SelectionCriterion (from Variability) .. 85
10.2.12 Variability (from Variability) ... 85
10.2.13 VariableElement (from Variability) .. 86
10.2.14 VariationGroup (from Variability) .. 87
10.2.15 VehicleLevelBinding (from Variability) .. 87

Part V Requirements .. 89

11 Requirements ... 90

11.1 Overview ... 90

11.2 Element Descriptions .. 91
11.2.1 DeriveRequirement (from Requirements) ... 92
11.2.2 OperationalSituation (from Requirements) ... 92
11.2.3 QualityRequirement (from Requirements) .. 92
11.2.4 QualityRequirementKind (from Requirements) «enumeration» .. 93
11.2.5 Refine (from Requirements) ... 94
11.2.6 Requirement (from Requirements) ... 94
11.2.7 RequirementsHierarchy (from Requirements) .. 95
11.2.8 RequirementsLink (from Requirements) ... 96
11.2.9 RequirementsModel (from Requirements) .. 97
11.2.10 RequirementsRelationship (from Requirements) {abstract} ... 97
11.2.11 RequirementsRelationshipGroup (from Requirements) .. 98
11.2.12 Satisfy (from Requirements) ... 98

12 UseCases ... 100

12.1 Overview ... 100

12.2 Element Descriptions .. 100
12.2.1 Actor (from UseCases) ... 101
12.2.2 Extend (from UseCases) .. 101

EAST-ADL Domain Model Specification version V2.1.12

9 (244)

12.2.3 ExtensionPoint (from UseCases) .. 102
12.2.4 Include (from UseCases) .. 102
12.2.5 RedefinableElement (from UseCases) {abstract} ... 102
12.2.6 UseCase (from UseCases) ... 103

13 VerificationValidation .. 104

13.1 Overview ... 104

13.2 Element Descriptions .. 106
13.2.1 VerificationValidation (from VerificationValidation) ... 106
13.2.2 Verify (from VerificationValidation).. 106
13.2.3 VVActualOutcome (from VerificationValidation) ... 107
13.2.4 VVCase (from VerificationValidation).. 107
13.2.5 VVIntendedOutcome (from VerificationValidation) ... 108
13.2.6 VVLog (from VerificationValidation) .. 108
13.2.7 VVProcedure (from VerificationValidation) ... 109
13.2.8 VVStimuli (from VerificationValidation) ... 110
13.2.9 VVTarget (from VerificationValidation).. 110

Part VI Timing ... 112

14 Timing ... 113

14.1 Overview ... 113

14.2 Element Descriptions .. 113
14.2.1 Event (from Timing) {abstract} .. 113
14.2.2 EventChain (from Timing) ... 114
14.2.3 PrecedenceConstraint (from Timing) .. 114
14.2.4 Timing (from Timing) ... 115
14.2.5 TimingConstraint (from Timing) {abstract} .. 115
14.2.6 TimingDescription (from Timing) {abstract} .. 116
14.2.7 TimingExpression (from Timing) ... 116

15 TimingConstraints ... 118

15.1 Overview ... 118

15.2 Element Descriptions .. 121
15.2.1 AgeConstraint (from TimingConstraints) .. 121
15.2.2 ArbitraryConstraint (from TimingConstraints) ... 122
15.2.3 BurstConstraint (from TimingConstraints) .. 123
15.2.4 ComparisonConstraint (from TimingConstraints) ... 123
15.2.5 ComparisonKind (from TimingConstraints) «enumeration» .. 124
15.2.6 DelayConstraint (from TimingConstraints) .. 124
15.2.7 ExecutionTimeConstraint (from TimingConstraints) ... 125
15.2.8 InputSynchronizationConstraint (from TimingConstraints) ... 126
15.2.9 OrderConstraint (from TimingConstraints).. 126
15.2.10 OutputSynchronizationConstraint (from TimingConstraints) .. 127
15.2.11 PatternConstraint (from TimingConstraints) ... 128
15.2.12 PeriodicConstraint (from TimingConstraints) .. 129
15.2.13 ReactionConstraint (from TimingConstraints) ... 129
15.2.14 RepetitionConstraint (from TimingConstraints) ... 130
15.2.15 SporadicConstraint (from TimingConstraints) ... 131
15.2.16 StrongDelayConstraint (from TimingConstraints) ... 132
15.2.17 StrongSynchronizationConstraint (from TimingConstraints) ... 133
15.2.18 SynchronizationConstraint (from TimingConstraints) ... 133

EAST-ADL Domain Model Specification version V2.1.12

10 (244)

16 Events ... 135

16.1 Overview ... 135

16.2 Element Descriptions .. 136
16.2.1 AUTOSAREvent (from Events) ... 136
16.2.2 EventFaultFailure (from Events) ... 136
16.2.3 EventFeatureFlaw (from Events) .. 136
16.2.4 EventFunction (from Events) .. 137
16.2.5 EventFunctionClientServerPort (from Events) .. 137
16.2.6 EventFunctionClientServerPortKind (from Events) «enumeration» .. 138
16.2.7 EventFunctionFlowPort (from Events) .. 138
16.2.8 ExternalEvent (from Events) ... 139
16.2.9 ModeEvent (from Events) ... 139

Part VII Dependability ... 140

17 Dependability .. 141

17.1 Overview ... 141

17.2 Element Descriptions .. 143
17.2.1 ControllabilityClassKind (from Dependability) «enumeration» .. 143
17.2.2 Dependability (from Dependability) ... 144
17.2.3 DevelopmentCategoryKind (from Dependability) «enumeration» .. 145
17.2.4 ExposureClassKind (from Dependability) «enumeration» .. 145
17.2.5 FeatureFlaw (from Dependability) .. 146
17.2.6 Hazard (from Dependability) ... 146
17.2.7 HazardousEvent (from Dependability) .. 147
17.2.8 Item (from Dependability) ... 148
17.2.9 SeverityClassKind (from Dependability) «enumeration» .. 148

18 ErrorModel .. 150

18.1 Overview ... 150

18.2 Element Descriptions .. 151
18.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype» ... 151
18.2.2 ErrorBehavior (from ErrorModel) .. 152
18.2.3 ErrorBehaviorKind (from ErrorModel) «enumeration» .. 153
18.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototype» .. 153
18.2.5 ErrorModelType (from ErrorModel) «atpType» ... 154
18.2.6 FailureOutPort (from ErrorModel) ... 156
18.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype» ... 156
18.2.8 FaultFailurePropagationLink (from ErrorModel) ... 157
18.2.9 FaultInPort (from ErrorModel) ... 157
18.2.10 InternalFaultPrototype (from ErrorModel) ... 158
18.2.11 ProcessFaultPrototype (from ErrorModel) .. 158

19 SafetyConstraints ... 159

19.1 Overview ... 159

19.2 Element Descriptions .. 159
19.2.1 ASILKind (from SafetyConstraints) «enumeration» .. 159
19.2.2 FaultFailure (from SafetyConstraints) ... 160
19.2.3 QuantitativeSafetyConstraint (from SafetyConstraints) .. 160
19.2.4 SafetyConstraint (from SafetyConstraints) ... 161

20 SafetyRequirement ... 162

EAST-ADL Domain Model Specification version V2.1.12

11 (244)

20.1 Overview ... 162

20.2 Element Descriptions .. 162
20.2.1 FunctionalSafetyConcept (from SafetyRequirement) ... 162
20.2.2 SafetyGoal (from SafetyRequirement) .. 163
20.2.3 TechnicalSafetyConcept (from SafetyRequirement) .. 163

21 SafetyCase ... 165

21.1 Overview ... 165

21.2 Element Descriptions .. 165
21.2.1 Claim (from SafetyCase) .. 165
21.2.2 Ground (from SafetyCase) .. 166
21.2.3 LifecycleStageKind (from SafetyCase) «enumeration» .. 167
21.2.4 SafetyCase (from SafetyCase) ... 167
21.2.5 Warrant (from SafetyCase) ... 168

Part VIII Generic Constraints .. 170

22 GenericConstraints ... 171

22.1 Overview ... 171

22.2 Element Descriptions .. 171
22.2.1 GenericConstraint (from GenericConstraints) .. 171
22.2.2 GenericConstraintKind (from GenericConstraints) «enumeration» .. 172
22.2.3 GenericConstraintSet (from GenericConstraints) ... 174
22.2.4 TakeRateConstraint (from GenericConstraints) ... 174

Part IX Infrastructure .. 175

23 Datatypes .. 176

23.1 Overview ... 176

23.2 Element Descriptions .. 176
23.2.1 ArrayDatatype (from Datatypes) ... 176
23.2.2 CompositeDatatype (from Datatypes) .. 177
23.2.3 EABoolean (from Datatypes) .. 177
23.2.4 EADatatype (from Datatypes) {abstract} «atpType» .. 178
23.2.5 EADatatypePrototype (from Datatypes) «atpPrototype» .. 178
23.2.6 EANumerical (from Datatypes) ... 178
23.2.7 EAString (from Datatypes) .. 179
23.2.8 Enumeration (from Datatypes) .. 179
23.2.9 EnumerationLiteral (from Datatypes) .. 180
23.2.10 Quantity (from Datatypes) ... 180
23.2.11 RangeableValueType (from Datatypes) ... 181
23.2.12 Unit (from Datatypes) .. 182

24 Values ... 183

24.1 Overview ... 183

24.2 Element Descriptions .. 183
24.2.1 EAArrayValue (from Values) ... 183
24.2.2 EABooleanValue (from Values) .. 183
24.2.3 EACompositeValue (from Values) .. 184
24.2.4 EAEnumerationValue (from Values) ... 184
24.2.5 EAExpression (from Values) «atpMixedString» .. 185
24.2.6 EANumericalValue (from Values) ... 185
24.2.7 EAStringValue (from Values) .. 185

EAST-ADL Domain Model Specification version V2.1.12

12 (244)

24.2.8 EAValue (from Values) {abstract} «atpPrototype» .. 186

25 Elements ... 187

25.1 Overview ... 187

25.2 Element Descriptions .. 188
25.2.1 Comment (from Elements) .. 188
25.2.2 Context (from Elements) {abstract}... 189
25.2.3 EAConnector (from Elements) {abstract}.. 189
25.2.4 EAElement (from Elements) {abstract} ... 189
25.2.5 EAPackage (from Elements) .. 190
25.2.6 EAPackageableElement (from Elements) {abstract} .. 190
25.2.7 EAPort (from Elements) {abstract} .. 191
25.2.8 EAPrototype (from Elements) {abstract} ... 191
25.2.9 EAType (from Elements) {abstract} .. 191
25.2.10 EAXML (from Elements) ... 192
25.2.11 Identifiable (from Elements) {abstract} .. 192
25.2.12 Rationale (from Elements) .. 193
25.2.13 Realization (from Elements) .. 193
25.2.14 Referrable (from Elements) {abstract} .. 194
25.2.15 Relationship (from Elements) {abstract} ... 194
25.2.16 TraceableSpecification (from Elements) {abstract}... 195

26 UserAttributes ... 196

26.1 Overview ... 196

26.2 Element Descriptions .. 197
26.2.1 UserAttributeDefinition (from UserAttributes) ... 197
26.2.2 UserAttributedElement (from UserAttributes) ... 198
26.2.3 UserElementType (from UserAttributes)... 199

Part X Annexes ... 201

27 Annex A: Notation ... 202

28 Annex B: Needs .. 206

28.1 Overview ... 206

28.2 Element Descriptions .. 206
28.2.1 ArchitecturalDescription (from Needs) .. 206
28.2.2 ArchitecturalModel (from Needs) .. 207
28.2.3 Architecture (from Needs) ... 207
28.2.4 BusinessOpportunity (from Needs)... 207
28.2.5 Concept (from Needs) {abstract} .. 208
28.2.6 Mission (from Needs) .. 208
28.2.7 ProblemStatement (from Needs) .. 209
28.2.8 ProductPositioning (from Needs) .. 209
28.2.9 Stakeholder (from Needs) ... 210
28.2.10 StakeholderNeed (from Needs) .. 211
28.2.11 VehicleSystem (from Needs) .. 211

29 Annex C: BehaviorDescription .. 212

30 BehaviorDescription .. 213

30.1 Overview ... 213

30.2 Element Descriptions .. 215
30.2.1 BehaviorConstraintBindingAttribute (from BehaviorDescription) .. 215

EAST-ADL Domain Model Specification version V2.1.12

13 (244)

30.2.2 BehaviorConstraintBindingEvent (from BehaviorDescription) .. 216
30.2.3 BehaviorConstraintInternalBinding (from BehaviorDescription) {abstract} 216
30.2.4 BehaviorConstraintParameter (from BehaviorDescription) {abstract} 217
30.2.5 BehaviorConstraintPrototype (from BehaviorDescription) «atpPrototype» 218
30.2.6 BehaviorConstraintTargetBinding (from BehaviorDescription) ... 218
30.2.7 BehaviorConstraintType (from BehaviorDescription) «atpType» ... 219

31 AttributeQuantificationConstraint .. 221

31.1 Overview ... 221

31.2 Element Descriptions .. 221
31.2.1 Attribute (from AttributeQuantificationConstraint) «atpPrototype» .. 221
31.2.2 AttributeQuantificationConstraint (from AttributeQuantificationConstraint) 222
31.2.3 BehaviorAttributeBinding (from AttributeQuantificationConstraint) ... 222
31.2.4 LogicalEvent (from AttributeQuantificationConstraint) .. 223
31.2.5 Quantification (from AttributeQuantificationConstraint) .. 223

32 ComputationConstraint ... 225

32.1 Overview ... 225

32.2 Element Descriptions .. 225
32.2.1 ComputationConstraint (from ComputationConstraint) ... 225
32.2.2 LogicalPath (from ComputationConstraint) ... 226
32.2.3 LogicalTransformation (from ComputationConstraint) .. 227
32.2.4 TransformationOccurrence (from ComputationConstraint) .. 228

33 TemporalConstraint .. 230

33.1 Overview ... 230

33.2 Element Descriptions .. 231
33.2.1 LogicalTimeCondition (from TemporalConstraint) .. 232
33.2.2 State (from TemporalConstraint) .. 232
33.2.3 StateEvent (from TemporalConstraint) ... 233
33.2.4 SynchronousTransition (from TemporalConstraint) .. 233
33.2.5 TemporalConstraint (from TemporalConstraint) ... 234
33.2.6 Transition (from TemporalConstraint) ... 235
33.2.7 TransitionEvent (from TemporalConstraint) .. 236

34 Index ... 237

EAST-ADL Domain Model Specification version V2.1.12

14 (244)

Part I Introduction

The purpose of the EAST-ADL language is to capture automotive electrical and electronic systems
with sufficient detail to allow modeling for documentation, design, analysis, and synthesis. These
activities require system descriptions on several abstraction levels, from top level features down to
tasks and communication frames. Moreover, the activities also involve the expression of non-
structural aspects of the electrical/electronic system under development, e.g., requirements,
behavior, and verification and validation.

By hosting all aspects of the automotive electrical/electronic system with this domain model, the
relations between them can be managed more efficiently. The different abstraction levels give a
modeling context and a view of systems, functions, and features on different levels of detail, and
with a clear separation of concerns.

This language specification describes how information needed for relevant analysis and synthesis
can be captured but does not define how the analysis or synthesis should be done. This approach
was chosen in order to allow company-specific processes while harmonizing the design artifacts to
allow information exchange between tools and organizations. In supplementary material we
provide a methodology description, where the language concepts are used in the context of a
generic process.

The purpose of the domain model is to specify the concepts of the domain. The domain model of
EAST-ADL also acts as a metamodel, which uses concepts from the AUTOSAR metamodel. This
means that the EAST-ADL metamodel (i.e., the EAST-ADL domain model) can be imported into
the AUTOSAR metamodel, where the references from EAST-ADL to AUTOSAR are restored. The
current version of the corresponding AUTOSAR metamodel is 4.0.

To import EAST-ADL into an AUTOSAR metamodel:

1) Open the AUTOSAR metamodel in Enterprise Architect.

2) Import the EAST-ADL metamodel as an XMI-file.

Figure 1. This diagram shows dependencies between packages in the domain model. All packages
except the AUTOSAR package depend on the EAST-ADL Infrastructure package. The AUTOSAR
package contains some concepts that EAST-ADL elements in the Infrastructure and Structure
packages depend on.

EAST-ADL Domain Model Specification version V2.1.12

15 (244)

Figure 2. Packages in the EAST-ADL domain model.

EAST-ADL Domain Model Specification version V2.1.12

16 (244)

1 Language Formalism

1.1 Levels of Formalism

The EAST-ADL domain model is specified using a combination of UML modeling techniques and
precise natural language to balance rigor and understandability.

1.2 Specification Structure

The EAST-ADL domain model specification is organized into different parts:

Part I includes a general introduction to the specification.

Parts II–IX include chapters that are organized according to the EAST-ADL domain model
subpackages.

Part X consists of annexes. This is where the notation for each element of the language is found.

Each part of the specification contains one or more chapters. Each chapter has the same
structure: first an Overview section and then am Element Descriptions section.

The EAST-ADL specification has an Annex A proposing a possible notation for some of the
metaclasses. Subsequent annexes contain preliminary extensions to the language that add
modelling concepts that are not part of the basic content. It is likely that these extensions will be
refined and subsequently integrated into the regular extensions in future releases of EAST-ADL.

1.2.1 Overview

This section of a chapter provides an overview of the EAST-ADL domain model constructs defined
in each subpackage, which are usually described by one or more class diagrams that show the
relationships between the elements of the package and, where applicable, relationships to other
packages.

Elements from AUTOSAR are shown in the diagrams as classes with a pink background.

1.2.2 Element Descriptions

The Element Description specifies the individual elements within each EAST-ADL subpackage. All
elements in the subpackage are ordered alphabetically and each element has the following
specification information:

<Element (from subpackage)>

The element description starts with a header with the name of the element and the subpackage
that it belongs to. If the element is abstract, “{abstract}” is shown in the header. If the element has
a stereotype attached, this is shown within guillemets («...»).

Generalizations

This paragraph lists those domain model constructs that the current element specializes (inherits
from).

Description

This paragraph provides a description of the current element and the direct context of this element
(related domain model constructs).

EAST-ADL Domain Model Specification version V2.1.12

17 (244)

Attributes

This paragraph specifies the element’s attributes with names and types. The attribute has a
unique name within the element. Each attribute has a type which is either a primitive or refers to
an enumeration.

In addition, each attribute is supplied with a cardinality; EAST-ADL uses only cardinalities [0..1] for
optional attributes and [1] for mandatory attributes.

Associations

This paragraph specifies the element’s rolenames for related concepts, as referred to by this
element by an association. The documentation of the rolename may include the stereotype
«isOfType», which is used to specify that the related element types this element.

Dependencies

This paragraph specifies the element’s rolenames for related concepts, as referred to by this
element by a dependency. The dependencies are always stereotyped «instanceRef» which is the
pattern used by AUTOSAR to identify that a more detailed model of associations rather than this
dependency is necessary to identify the precise context of the target element.

Constraints

This paragraph specifies the element’s constraints for verification of the correct use of the
element. The constraints are given in natural language.

Semantics

This paragraph specifies the element's meaning in a concise form and defines how it may be used
and specialized by other elements within the language. Definitions in this paragraph are not
tailored to understandability (as in the "Description" paragraph) but precision and succinctness.

EAST-ADL Domain Model Specification version V2.1.12

18 (244)

2 Abbreviations

AADL Architecture Analysis and Design Language

ADL Architecture Description Language

ATESST Advancing Traffic Efficiency and Safety through
Software Technology

AUTOSAR AUTomotive Open System ARchitecture

EAST-EEA Electronics Architecture and Software Technology -
Embedded Electronic Architecture

ECU Electronic Control Unit

FAA Functional Analysis Architecture

FDA Functional Design Architecture

HDA Hardware Design Architecture

RIF Requirement Interchange Format

SysML System Modeling Language

TADL Timing Augmented Description Language

TIMMO Timing Model

UML Unified Modeling Language

V&V Verification & Validation

XMI XML Metadata Interchange

XML eXtensible Mark-up Language

EAST-ADL Domain Model Specification version V2.1.12

19 (244)

Part II Structural Constructs

This part of the specification defines the structural constructs used in EAST-ADL. The structural
view of a model focuses on the static structure of the instances of the system being modeled and
their static relationships. This includes the internal structure of such instances and their external
interfaces through which they can be connected to communicate with one another, by exchanging
data or sending messages.

EAST-ADL abstraction layers are introduced to allow reasoning about the features on several
levels of abstraction. Note, however, that the abstraction levels are only conceptual; the modeling
elements are organized according to the artifacts, which may span more than one of these layers.
Where applicable, entities on different abstraction levels are related with a realization association
to allow traceability analysis. Traceability can also be deduced from the requirements structure.

The EAST-ADL abstraction layers with their corresponding artifacts are:

- Vehicle Level, with feature models describing decompositions of system characteristics
organized as a software product line.

- Analysis Level, including the Functional Analysis Architecture (FAA). The FAA is built from an
abstract functional definition of the system to capture analysis support of what the system shall do,
ensuring relation with features from the Vehicle layer view. There is an n-to-m mapping between
VehicleFeature and Feature entities and FAA entities (i.e., one or several functions may realize
one or several features).

- Design Level, including the Functional Design Architecture (FDA). The FDA represents a
decomposition of functionalities denoted in the FAA, including behavioral description but excluding
software implementation constraints. The decomposition has the purpose of making it possible to
meet constraints regarding non-functional properties such as allocation, efficiency, reuse, or
supplier concerns. Again, there are n-to-m mappings by Realization relationships between entities
in the FDA and entities in the FAA. Non-transparent infrastructure functionality of the AUTOSAR
Basic SW Architecture, such as mode changes and error handling, are also represented at the
Design Level in terms of BasicSoftwareFunctions.

- The Hardware Architecture models Electronic Control Units (ECUs), communication links,
sensors and actuators and their connections. The Hardware Architecture is also considered at the
Analysis Level as FunctionalDevices and at the Design Level as HardwareFunctions because
models of sensors, actuators, and early assumptions of hardware may be needed either for the
Functional Analysis Architecture or the Functional Design Architecture.

- Implementation Level refers to the System element in an AUTOSAR model.

The Environment contains Environment functions, which are encapsulations of plant models, i.e.
models of the behavior of the vehicle and its non-electronic systems. Environment models are
needed for validation and verification, from early analysis models to the implemented embedded
system. Note that no specific EnvironmentFunction exists as such in the language, but
DesignFunctions or AnalysisFunctions are used. However to connect such functions to the rest of
the systems, special connectors are used, ClampConnectors which can traverse hierarchal
containments.

EAST-ADL Domain Model Specification version V2.1.12

20 (244)

3 SystemModeling

3.1 Overview

The SystemModel is the top-level container of an EAST-ADL model. It represents the
electrical/electronic system in a vehicle and concepts related to the various abstraction levels.

For the design of electrical/electronic systems of arbitrary size and complexity, the possibility of
hierarchical structuring of the instances is provided, so these models contain further elements in a
hierarchy. Relations between these elements across the boundaries of the abstraction levels are
contained in a SystemModel. This is possible because the SystemModel is a Context, and is thus
able to contain relations.

Figure 3. Diagram for SystemModel. Note how the ImplementationLevel refers to the System from
the AUTOSAR SystemTemplate.

3.2 Element Descriptions

3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

21 (244)

Description
The AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract
functional definition. It includes the functional analysis architecture (FAA), which represents the
functional structure.

Attributes
No additional attributes

Associations

 functionalAnalysisArchitecture : AnalysisFunctionPrototype [0..1] {composite}

The included functionalAnalysisArchitecture, this prototype shall be typed by an
AnalysisFunctionType modeling the FunctionalAnalysisArchitecture. It is an abstract
functional representation of the electrical/electronic system and realizes the
VehicleFeatures.

Constraints
No additional constraints

Semantics
AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract functional
definition. It defines the logical functionality and a logical decomposition of functionality down to
the appropriate granularity.

3.2.2 DesignLevel (from SystemModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

Description
The DesignLevel represents the vehicle electrical/electronic system on the design abstraction
level. It includes primarily the Functional Design Architecture (FDA), and the
HardwareDesignArchitecture (HDA).

FDA represents a top level Function. It is supposed to implement all the functionalities of a vehicle,
as specified by a FAA or a Vehicle level (if no FAA has been defined during the process).

The design level in EAST-ADL includes the design architecture containing the functional
specification and hardware architecture of the vehicle electrical/electronic system. The design
architecture includes the FDA representing a decomposition of functionalities analyzed on the
analysis level. The decomposition has the purpose of making it possible to meet constraints
regarding non-functional properties such as allocation, efficiency, reuse, or supplier concerns.
There is an n-to-m mapping between entities of the design level and the ones on the analysis
level.

Non-transparent infrastructure functionality such as mode changes and error handling are also
represented at the design level, such that their impact on applications' behaviors can be
estimated.

The FDA parts are typed by DesignFunctionTypes and e.g. LocalDeviceManagers. The view of the
HardwareArchitecture facilitates the realization of LocalDeviceManager as sensor/actuator HW
elements.

The HDA is the hardware design from a system perspective. The HDA has two purposes:

1) It shows the physical entities and how they are connected.

2) It is an allocation target for the Functions of the FDA.

The HDA represents the hardware architecture of the embedded system. Its contained HW
elements represent the physical aspects of the hardware entities and how they are connected.

file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

22 (244)

HardwareFunctionTypes associated to HW components represent the logical behavior of the
contained HW elements.

Attributes
No additional attributes

Associations

 functionalDesignArchitecture : DesignFunctionPrototype [0..1] {composite}

The included FDA. This includes functional design, modeled by DesignFunctions;
middleware functionality abstraction, to be modeled by BasicSoftwareFunctionTypes in the
implementation level; and logical hardware, modeled by HardwareFunctionTypes.

The FDA represents the elementary design function that is used to describe the leaves of
the functional hierarchy. The composition of these leaves makes up the implementation
behavior of the entire functional hierarchy.

 allocation : Allocation [*] {composite}

 hardwareDesignArchitecture : HardwareComponentPrototype [0..1] {composite}

The included HDA models the resources to which the functional design architecture parts
may be allocated.

Constraints
No additional constraints

Semantics
The DesignLevel is the representation of the vehicle electrical/electronic system on the design
abstraction level. It corresponds to the design of logical functions and boundaries extended in
regards to resource commitment.

3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

Description
The ImplementationLevel represents the software architecture and the hardware architecture of
the electrical/electronic system in the vehicle. The ImplementationLevel is defined by the
AUTOSAR SystemArchitecture and SoftwareArchitecture. For example, functions of the FDA will
be realized by AUTOSAR SW-Components in the ImplementationLevel. Traceability is supported
from implementation level elements (AUTOSAR) to upper level elements by Realization
relationships.

Attributes
No additional attributes

Associations

 autosarSystem : System [0..1]

The AUTOSAR System from the SystemTemplate represents the AUTOSAR
implementation of the SystemModel.

Constraints
No additional constraints

Semantics
The ImplementationLevel is the representation of the vehicle electrical/electronic system on the
implementation abstraction level. It corresponds to the system implementation in Software and
Hardware.

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Allocation
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23System

EAST-ADL Domain Model Specification version V2.1.12

23 (244)

3.2.4 SystemModel (from SystemModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

Description
The SystemModel is used to organize models/architectures according to their abstraction level; it
can also hold with relationships between the different levels.

Attributes
No additional attributes

Associations

 vehicleLevel : VehicleLevel [0..1] {composite}

The included vehicle abstraction level.

 designLevel : DesignLevel [0..1] {composite}

The included design abstraction level.

 analysisLevel : AnalysisLevel [0..1] {composite}

The included analysis abstraction level.

 implementationLevel : ImplementationLevel [0..1] {composite}

The included implementation abstraction level.

Constraints
No additional constraints

Semantics
The SystemModel represents the electrical/electronic system of the vehicle, and concepts related
to the various abstraction levels.

3.2.5 VehicleLevel (from SystemModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

Description
The VehicleLevel represents the vehicle content from an external perspective through an arbitrary
set of feature models. These contain VehicleFeatures that are organized to reflect the vehicle
configuration and that have associated requirements, use cases, etc. for its definition.

Attributes
No additional attributes

Associations

 technicalFeatureModel : FeatureModel [*] {composite}

This association identifies the core technical feature model of the complete system. This
has a special role as it defines all the features of the complete system on vehicle level. In
addition to this feature model, there may be one or more so-called product feature models
(cf. association productFeatureModel in meta-class Variability in the variability extension).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on vehicle level, which provide an orthogonal view on the core technical
feature model tailored to a particular purpose, for example an end-customer feature model.
However, there may be other use cases for feature models on vehicle level. More detailed

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23VehicleLevel
file:///C:/Volvo/MAENAD/index.html%23DesignLevel
file:///C:/Volvo/MAENAD/index.html%23AnalysisLevel
file:///C:/Volvo/MAENAD/index.html%23ImplementationLevel
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FeatureModel

EAST-ADL Domain Model Specification version V2.1.12

24 (244)

treatment of this is beyond the scope of the language specification and can be found in the
accompanying usage and methodology documentations.

Constraints
[1] All contained feature models are FeatureModels that only contain VehicleFeatures.

Semantics
The VehicleLevel represents the vehicle content through solution-independent features.

EAST-ADL Domain Model Specification version V2.1.12

25 (244)

4 FeatureModeling

4.1 Overview

This package describes the basic feature modeling that is employed on the vehicle level as well as
on the artifact levels, i.e., on AnalysisLevel and below. Details of feature modeling that are specific
to the vehicle level are factored out and documented separately in the package
VehicleFeatureModeling.

A feature in this sense is a characteristic or trait that individual variants of either the complete
system (in case of feature models on VehicleLevel) or an individual Analysis- or
DesignFunctionType (in case of public feature models of FunctionTypes) may or may not possess.
By listing features that are common to all variants as well as those that apply only to some
variants, a feature model defines the complete system's / FunctionType's commonality and
variability. In addition to this use in the context of variability management, features can also be
used to represent coarse-grained requirements, in order to define a high-level break-down of the
system's main functionality. Therefore, feature modeling is not only useful for variability
management but also when modeling completely invariant systems. More details are given below
in the description of the meta-classes Feature and FeatureModel and in package
VehicleFeatureModeling.

Figure 4. Diagram for FeatureModeling.

4.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

26 (244)

4.2.1 BindingTime (from FeatureModeling)

Generalizations

 EAElement (from Elements)

Description
The motivation for attributing features and variable elements with binding times is that binding
times encapsulate important information about the variability under view.

Variability that must be bound (determined, decided) very early in the system development may
not be visible in one single feature model but only in comparison with different feature models in
the context of multi-level feature trees; late bound variability is variability providing the driver with
choices for current equipment configuration.

Binding times are important because they describe if the variability must be decided during system
development or if the variability is determined by a customer or if the variability itself is part of the
product features that are sold to the customer. Possible binding times are:

- SystemDesignTime

- CodeGenerationTime

- PreCompileTime

- LinkTime

- PostBuild

- Runtime

Note that a binding time is never a particular point in time such as April 2nd, 2011, but always a
certain stage in the overall development, production and shipment process as represented by the
above values.

Each feature must have a binding time (association requiredBindingTime) and may have one
further binding time (association actualBindingTime).

The required binding time describes the binding time that the feature is intended to have. But due
to technical conditions it may occur that the actually realized binding time of the feature differs
from the originally intended binding time. In this case one has to provide information about the
actual binding time. In the rationale it must be described by what the required binding time is
motivated by and what the reasons are for a (different) actual binding time.

Attributes

 kind : BindingTimeKind = systemDesignTime [1]

The kind of the binding time, see enumeration BindingTimeKind for specification of binding
times.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.2 BindingTimeKind (from FeatureModeling) «enumeration»

Generalizations
None

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

27 (244)

Description
BindingTimeKind represents the set of possible binding times.

Enumeration Literals

 codeGenerationTime

Variability will be bound during code generation.

From AUTOSAR:

* Coding by hand, based on requirements document.

* Tool based code generation, e.g. from a model.

* The model may contain variants.

* Only code for the selected variant(s) is actually generated.

 linkTime

Variability will be bound during linking.

From AUTOSAR:

Configure what is included in object code, and what is omitted

Based on which variant(s) are selected

E.g. for modules that are delivered as object code (as opposed to those that are delivered
as source code)

 postBuild

Variability will be bound at certain occasions after shipment, for example when the vehicle
is in a workshop.

 preCompileTime

Variability will be bound during or immediately prior to code compilation.

From AUTOSAR:

This is typically the C-Preprocessor. Exclude parts of the code from the compilation
process, e.g., because they are not required for the selected variant, because they are
incompatible with the selected variant, because they require resources that are not present
in the selected variant. Object code is only generated for the selected variant(s). The code
that is excluded at this stage will not be available at later stages.

 runtime

Variability will be bound by the customer after shipment by way of vehicle configuration.

Variability with such a late binding time can also be seen as a special functionality of the
system which is not documented as variability at all. However, it is sometimes
advantageous to represent such cases as variability in order to be able to seamlessly
include them in the overall variability management activities.

 systemDesignTime

Variability will be bound during development of the electrical/electronic system.

From AUTOSAR:

* Designing the VFB.

* Software Component types (portinterfaces).

* SWC Prototypes and the Connections between SWCprototypes.

EAST-ADL Domain Model Specification version V2.1.12

28 (244)

* Designing the Topology

* ECUs and interconnecting Networks

* Designing the Communication Matrix and Data Mapping

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.3 Feature (from FeatureModeling) «atpStructureElement»

Generalizations

 FeatureTreeNode (from FeatureModeling)

Description
A Feature represents a characteristic or trait of some object of consideration. The actual object of
consideration depends on the particular purpose of the feature's containing feature model.

Example 1: The core technical feature model on vehicle level defines the technical properties of
the complete system, i.e., vehicle. So its object of consideration is the vehicle as a whole and
therefore its features represent characteristics or traits of the vehicle as a whole.

Example 2: The public feature model of some function F in the FDA defines the features of this
particular software function. So its object of consideration is function F and therefore its features
represent characteristics or traits of this function F.

Attributes

 cardinality : String [1]

Specifies the Feature's cardinality stating how often this feature may be selected during
configuration.

Typical cardinalities include:

- A cardinality of 0..1 means that this Feature is optional, i.e. it can be selected or
deselected during configuration.

- A cardinality of 1 means that this Feature is mandatory, i.e. it cannot be deselected but is
always present in a configuration if its parent feature is present; mandatory root features
are present in all configurations.

- A cardinality of 0 means that this Feature is abstract, i.e. it cannot be selected and is
never present in any configuration. This can be used to completely disable a feature and, in
the case of non-leaf features, the whole subtree below it, for example to tentatively remove
a subtree without (yet) deleting it completely from the model.

- A cardinality with an upper bound greater than 1 or * (infinite), such as [0..2], [1..*], or
[2..8], means that this Feature is cloned, i.e. it may be selected more than once during
configuration. If such a feature is actually selected more than once in a particular
configuration, then its entire subtree may be configured differently for each selection.
Cloned features are in fact instantiated during configuration and each instance is provided
with a name.

Note that using cloned features, i.e. features with cardinality having an upper bound
greater than 1, has far-reaching consequences for how Features are applied. If this is not
desired/needed in a certain project, cardinalities >1 can be prohibited by specifying an

file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode

EAST-ADL Domain Model Specification version V2.1.12

29 (244)

appropriate complianceLevel in the FeatureModel. As a general guideline, cloned features
should be avoided as far as possible. In some situations, however, they can prove
extremely useful and elegant. For example, consider the feature model of a wiper system;
in order to allow for an extremely flexible configuration of the interval modes, a single
parameterized cloned feature can be used: "IntervalMode[2..*] : Float". With this single
cloned feature, any number of intervals can be created (but at least 2) and for each interval
a precise duration in sec can be configured; without cloned features, this degree of
flexibility could not easily be achieved.

Associations

 actualBindingTime : BindingTime [1] {composite}

The actual binding time, independent of the required binding time.

Due to technical conditions it may occur that the actually realized binding time of the
feature/variation point differs from the originally intended binding time. In this case one has
to provide information about the actual binding time.

In the rationales it must be described what the reasons are for a (different) actual binding
time.

 requiredBindingTime : BindingTime [0..1] {composite}

The required binding time could possibly deviate from the actual binding time.

The attribute reflects the intended binding time, and actual binding time can be later
adapted to this required binding time, if surrounding constraints allow a change.

Each feature/variation point must have a required binding time attribute.

 childNode : FeatureTreeNode [*] {composite}

Features may have any number of Features or FeatureGroups as their children or none at
all.

 featureParameter : EADatatype [0..1]

For parameterized features, this specifies the type of the feature's parameter.

Constraints
No additional constraints

Semantics
Feature is a (non)functional characteristic, constraint or property that can be present or not in a
(vehicle) product line.

4.2.4 FeatureConstraint (from FeatureModeling)

Generalizations

 EAElement (from Elements)

Description
Captures a constraint on the containing feature model's configuration which is too complex to be
expressed by way of a FeatureLink. In general, all constraints that can be expressed by a
FeatureLink can also be expressed by a FeatureConstraint, but not vice versa.

Attributes

 criterion : String [1]

The actual constraint. This is a logic expression in VSL like the criterion of a
ConfigurationDecision. For the constraint to be met this expression always has to evaluate
to true.

file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

30 (244)

For example, to express a mutual exclusion of two features, use the expression "! (Radar &
RainSensor)". However, note that this particular constraint could also be formulated as a
FeatureLink with type "excludes".

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

4.2.5 FeatureGroup (from FeatureModeling)

Generalizations

 FeatureTreeNode (from FeatureModeling)

Description
FeatureGroup is a specialization of the FeatureTreeNode, enabling grouping of several Features.

Attributes

 cardinality : String [1]

The cardinality of the FeatureGroup, specifies how the grouped features, in featureGroup,
can be combined. For example, a FeatureGroup owning the two Features A and B, and
with a cardinality of [1], means that A and B are alternatives, but only one of them can be
chosen. Mandatory features among the child features count as 1 and for cloned features all
instances created in the configuration count.

Associations

 childFeature : Feature [2..*] {composite}

FeatureGroups may only have Features as their children and must always have at least
two children.

It is perfectly legal to have child features in a feature group that are mandatory or cloned.
However, except for special use cases, this is discouraged and therefore all child features
of a FeatureGroup should usually be optional, i.e. have cardinality [0..1].

Constraints
No additional constraints

Semantics
FeatureGroup is a grouping entity for sibling Features to reflect variability for a set of Features.

4.2.6 FeatureLink (from FeatureModeling)

Generalizations

 Relationship (from Elements)

Description
A FeatureLink resembles a Relationship between two Features referred to as 'start' and 'end'
feature (such as "feature S requires feature E" or "S excludes E").

The type of the FeatureLink specifies the precise semantics of the relationship. There are several
predefined types, for example "needs" states that S requires E. In addition, user-defined types are
allowed as well. For user-defined types, attribute 'customType' provides a unique identifier of the
custom link type and attribute 'isBidirectional' states whether the link is uni- or bidirectional.

file:///C:/Volvo/MAENAD/index.html%23FeatureTreeNode
file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Relationship

EAST-ADL Domain Model Specification version V2.1.12

31 (244)

FeatureLinks are similar to FeatureConstraints but much more restricted. The rationale for having
FeatureLinks in addition to FeatureConstraints is that in many cases FeatureLinks are sufficient
and tools can deal with them more easily and appropriately (e.g. they can easily be presented
visually as arrows in a diagram).

Attributes

 customType : String [1]

The custom type of this FeatureLink identified by a String value. This attribute's value is
ignored if attribute 'kind' is set to some other value than 'custom'.

Each company or project can decide to use additional link types by defining unique key-
words for them. In cases where FeatureModels are shared with third parties (other
departments, companies, etc.) a globally unique type string must be used. Follow the
instructions for finding globally unique keys for user attributes (cf. documentation of
metaclass UserAttributeValue).

 isBidirectional : Boolean [0..1]

Tells whether the FeatureLink is bidirectional or unidirectional. For predefined kinds, such
as "needs", "mandatoryAlternative", etc., this attribute will be ignored and the kind
determines whether the link is bidirectional or not (as defined in the documentation of
attribute 'type', below). For custom kinds, this attribute may be provided to explicitly state
the link's direction. If this attribute is not provided in case of a custom link type, then the
link is assumed to be unidirectional.

 kind : VariabilityDependencyKind [1]

The kind determines the precise semantics of the relation between the FeatureLink's start
and end feature. There are 5 predefined kinds as defined by enumeration
VariabilityDependencyKind and in the case of kind 'custom' the attribute customType can
be used to define a custom feature link type.

Associations

 start : Feature [1]

The source [supplier] Feature of the relationship.

 end : Feature [1]

The target [client] Feature of the dependency.

Constraints
[1] The start and end Features of a FeatureLink must be contained in the FeatureModel that
contains the FeatureLink.

Semantics
The FeatureLink is a relationship between Features that may constrain the selection of Features
involved in the relationship.

4.2.7 FeatureModel (from FeatureModeling) «atpStructureElement»

Generalizations

 Context (from Elements)

Description
FeatureModel denotes a model owning Features. The FeatureModel can be used to describe
variability and commonality of a specified electrical/electronic system at any abstraction level in the
SystemModel.

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

32 (244)

The FeatureModel can be used either to describe the variability within a particular Function or to
describe the overall variability of a vehicle (cf. VehicleLevel). The FeatureModel describing internal
variability of a FunctionType refers to the VehicleLevel by a «realizes» link (informative).

Note, however, that a FeatureModel per definition does not always have to define variability. If a
feature model contains only mandatory features, then its purpose is completely unrelated to
variability. The features in such a FeatureModel could serve, for example, as invariant "coarse-
grained requirements". The most important example is the core technical feature model on vehicle
level which is also used for SystemModels that do not contain any variability at all. However, most
uses of feature models in EAST-ADL are primarily motivated by variability definition and
management.

A public, local FeatureModel of an artifact element realizes a VehicleFeature of the VehicleLevel.

Attributes
No additional attributes

Associations

 rootFeature : Feature [*] {composite}

The root Features owned by the FeatureModel. Note that only root Features are directly
contained in the model; non-root Features are contained in their parent Feature or parent
FeatureGroup.

 featureLink : FeatureLink [*] {composite}

The FeatureLinks owned by the FeatureModel.

 featureConstraint : FeatureConstraint [*] {composite}

FeatureConstraints owned by the FeatureModel.

Constraints
No additional constraints

Semantics
The FeatureModel has no specific semantics. Further subclasses of FeatureModel will add
semantics appropriate to the concept they represent.

4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}

Generalizations

 Context (from Elements)

Description
The abstract base class for all nodes in a feature tree.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
FeatureTreeNode has no specific semantics. Further subclasses of FeatureTreeNode will add
semantics appropriate to the concept they represent.

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23FeatureLink
file:///C:/Volvo/MAENAD/index.html%23FeatureConstraint
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

33 (244)

4.2.9 VariabilityDependencyKind (from FeatureModeling) «enumeration»

Generalizations
None

Description
This enumeration encapsulates the available types of constraints that can be applied to a
FeatureLink or VariationGroup (the latter is applicable only if the variability extension is used).

Enumeration Literals

 custom

When used in a FeatureLink: the attribute customType in the FeatureLink defines the
custom feature link type as explained there.

When used in a VariationGroup: this kind states that the dependency between the
elements denoted by association variableElement of the VariationGroup will be defined by
a logical expression in attribute 'constraint' of the VariationGroup.

 impedes

Weak from of "excludes".

When used in a FeatureLink: the FeatureLink's start feature S and its end feature E must
usually(!) not be selected in a single configuration. You can select S together with E but
you should have a good reason to do so. Always bidirectional.

When used in a VariationGroup: accordingly as above.

 mandatoryAlternative

When used in a FeatureLink: either the FeatureLink's start feature S or its end feature E
must be selected in any configuration: S xor E. Always bidirectional.

When used in a VariationGroup: this kind states that exactly(!) one element of the elements
denoted by association variableElement of the VariationGroup must be selected in any
valid final system configuration.

 needs

When used in a FeatureLink: if the FeatureLink's start feature S is selected, then also its
end feature E must be selected: not (S and not E). Always unidirectional.

When used in a VariationGroup: assuming the ordered association variableElement in
meta-class VariationGroup refers to elements VE1, VE2, ..., VEn, this kind states that VE1
requires (i.e. may not appear without) all other elements VE2, VE3, ..., VEn.

 optionalAlternative

When used in a FeatureLink: the FeatureLink's start feature S and end feature E are
incompatible and must never be both selected in a single configuration: not (S and E).
Always bidirectional.

When used in a VariationGroup: this kind states that at most(!) one element of the
elements denoted by association variableElement of the VariationGroup must be selected
in any valid final system configuration.

 suggests

Weak form of "needs".

When used in a FeatureLink: if the FeatureLink's start feature S is selected, then usually(!)
also its end feature E must be selected. You can select S without E but you should have a
good reason to do so. Always unidirectional.

EAST-ADL Domain Model Specification version V2.1.12

34 (244)

When used in a VariationGroup: accordingly as above.

Associations
No additional associations

Constraints
No additional constraints

Semantics
Predefined kinds of constraints that can be associated to a FeatureLink or VariationGroup.

EAST-ADL Domain Model Specification version V2.1.12

35 (244)

5 VehicleFeatureModeling

5.1 Overview

At the highest abstraction level, i.e., the Vehicle Level, EAST-ADL provides support for
classification and definition of product lines (the entire vehicle for a car maker or some of its sub-
systems for suppliers). The different possible configurations of the embedded electronic
architecture are captured on a high abstraction level in terms of features. A feature in this sense is
a characteristic or trait that individual variants of the vehicle may or may not have.

The specification of the features themselves, together with their forms of realization, the
dependencies between them, and the requirements to be respected for their realization is
performed at the Vehicle Level and it should be done independently of any product line. This
would be the basis for a consistent reuse of features in different product lines and projects. At this
level, a feature represents particular high-level requirements to be realized in all product line
members that respect some conditions, e.g., US cars with elegance trim and engine size higher
than 2.4.

Figure 5. Diagram for VehicleFeatureModeling.

5.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

36 (244)

5.2.1 DeviationAttributeSet (from VehicleFeatureModeling)

Generalizations

 EAElement (from Elements)

Description
DeviationAttributeSet specifies the set of rules of allowed deviations from the reference model in a
referring model. These rules are important, because they make sure that the different
FeatureModels, referring to one reference model, follow specific rules for deviation, so a later
integration into one FeatureModel may be possible.

Attributes

 allowChangeAttribute : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature attributes may be changed. Allowed
values: no, append, yes.

 allowChangeCardinality : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature cardinality (i.e. variability of the
VehicleFeature) may be changed. Allowed values: no, subset, yes.

 allowChangeDescription : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature description may be changed. Allowed
values: no, append, yes.

 allowChangeName : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature name may be changed. Allowed
values: no, append, yes.

 allowMove : DeviationPermissionKind = YES [1]

This rule sets whether and how the VehicleFeature may be moved to another place in the
feature diagram. Allowed values: no, subtree, yes.

 allowReduction : DeviationPermissionKind = YES [1]

This rule sets if the reference feature may have a child without a corresponding referring
feature among the children of the referring feature. Allowed values: no, subtree, yes.

 allowRefinement : DeviationPermissionKind = YES [1]

This rule sets whether and how adding may be done of a child feature (without a
corresponding feature in the reference model). Allowed values: no, yes.

 allowRegrouping : DeviationPermissionKind = YES [1]

This rule sets whether and how the immediate child features of the VehicleFeature are
allowed to be regrouped (i.e. creation or deletion of FeatureGroups below the respective
VehicleFeature). Allowed values: no, widen, yes.

 allowRemoval : DeviationPermissionKind = YES [1]

This rule sets if the feature in the referring model (compared to the reference model) may
be deleted. Allowed values: no, yes.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

37 (244)

Semantics
See description.

5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»

Generalizations
None

Description
The DeviationPermissionKind is an enumeration with enumeration literals defining possible values
for deviation attributes.

Enumeration Literals

 append

The name, description or other attribute may only be changed by appending text without
changing the original text. This kind is only applicable to deviation attributes
"allowChangeName", "allowChangeDescription" and "allowChangeAttribute".

 no

The deviation is not allowed.

 subset

The cardinality may only be changed such that the new cardinality is a subset of the
original cardinality. This kind is only applicable to deviation attribute
"allowChangeCardinality".

 subtree

In case of deviation attribute "allowMove": the parent of the VehicleFeature may be
changed, but the original parent must remain a predecessor (i.e. moving the
VehicleFeature itself is allowed but it may only be moved further down within the same
subtree).

In case of deviation attribute "allowReduction": the children of the VehicleFeature may be
moved elsewhere, but they must remain successors of the VehicleFeature (i.e. moving
them away is allowed but they may only be moved further down within the same subtree).

This kind is only applicable to deviation attributes "allowMove" and "allowReduction".

 widen

Feature groups may only be widened, i.e. it is only legal to add features into a feature
group that were not grouped before, but not to ungroup features. This kind is only
applicable to deviation attribute 'allowRegrouping'.

 yes

The deviation is allowed.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

EAST-ADL Domain Model Specification version V2.1.12

38 (244)

5.2.3 VehicleFeature (from VehicleFeatureModeling)

Generalizations

 Feature (from FeatureModeling)

Description
VehicleFeature represents a special kind of feature intended for use on Vehicle Level. The main
difference to features in general is that they provide support for the multi-level concept (via their
DeviationAttributeSet) and several additional attributes with meta-information specific to the
vehicle level viewpoint.

Attributes

 isCustomerVisible : Boolean [1]

This attribute states whether the VehicleFeature is customer visible (in contrast to a
VehicleFeature that is e.g. technically driven).

VehicleFeatures describe the system's characteristics on the level of the complete system
and on a high abstraction level but they can still have a strong technical viewpoint.
Therefore, they are usually not suitable for being directly presented to the end-customer.
There are two approaches to deal with this situation.

(1) The simple approach uses this attribute to denote those VehicleFeatures that are
suitable for immediate end-customer configuration: if this attribute is set to true, then the
feature will be directly presented to the end-customer for selection or de-selection; if set to
false, then the feature will be hidden from the end-customer and is thus reserved for
internal configuration.

(2) The more sophisticated approach is to define a dedicated product feature model to
capture the customer viewpoint (available in the variability extension) in addition to the
technical feature model on Vehicle Level and to provide a configuration decision model that
maps configurations of this end-customer-oriented product feature model to the core
technical feature model on Vehicle Level. This approach is much more flexible because the
customer-view on the product line's variability can be structured freely and independently
from the core technical feature model; furthermore, this approach can cope much better
with evolution because the end-customer-oriented feature model can be evolved
independently of the core technical feature model (and vice versa). When applying this
second approach, this attribute isCustomerVisible will no longer be used, i.e., its value will
be ignored.

The simple approach #1 is suitable for simple product line scenarios. Approach #2 should
be used for complex scenarios with large core technical feature models and/or longer
evolution periods of the overall product line infrastructure.

 isDesignVariabilityRationale : Boolean [1]

A VehicleFeature marked as a design variability rationale captures a variant showing up on
a concrete artifact level that needs to be modeled on the Vehicle Level as well, in order to
be directly available for immediate configuration on Vehicle Level. It is, from the abstraction
layer's point of view, not a true Vehicle Level feature.

If true, then isCustomerVisible is usually false but there may be rare exceptions.

 isRemoved : Boolean [1]

This attribute describes if the VehicleFeature is removed (but kept in the database for
tracking of evolution, which is required by the multi-level concept).

Associations

 deviationAttributeSet : DeviationAttributeSet [0..1] {composite}

file:///C:/Volvo/MAENAD/index.html%23Feature
file:///C:/Volvo/MAENAD/index.html%23DeviationAttributeSet

EAST-ADL Domain Model Specification version V2.1.12

39 (244)

Possible deviation attributes included in the VehicleFeature. If the VehicleFeature is part of
a reference feature model in the context of multi-level feature models, the attribute can
constrain the allowed deviations for the respective referring features.

Constraints
[1] VehicleFeatures can only be contained in FeatureModels on VehicleLevel.

Semantics
A VehicleFeature is a functional or non-functional characteristic, constraint or property that can be
present or not in a vehicle product line on the level of the complete system, i.e. vehicle.

EAST-ADL Domain Model Specification version V2.1.12

40 (244)

6 FunctionModeling

6.1 Overview

The function modeling is performed in the FunctionalAnalysisArchitecture (in the AnalysisLevel)
and the FunctionalDesignArchitecture (in the DesignLevel). The root component of the function
compositional hierarchy on AnalysisLevel is the FunctionalAnalysisArchitecture (FAA); the root
component of the function compositional hierarchy on DesignLevel is the
FunctionalDesignArchitecture (FDA), see the diagram for SystemModeling.

The main modeling concept applied here is functional component modeling: Functions interact
with one another via ports that are connected by connectors owned by the composing function.
Occurrences of functions are modeled by typed prototypes in the composing function. These
occurrences are typed by types. This naming convention of the type-prototype pattern is from
AUTOSAR, however the concept of types and typed elements is also available in e.g. UML2.

Figure 6. Diagram for FunctionModeling showing the concepts for function modeling at different
abstraction levels, elements in the DesignLevel are allocateable on elements in the hardware design
architecture.

EAST-ADL Domain Model Specification version V2.1.12

41 (244)

Figure 7. Diagram for FunctionPorts and their respective typing.

6.2 Element Descriptions

6.2.1 AllocateableElement (from FunctionModeling) {abstract}

Generalizations
None

Description
The AllocateableElement is an abstract superclass for elements that are allocateable.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The AllocateableElement abstracts all elements that are allocateable.

Subclasses of the abstract class AllocateableElement add their own semantics.

EAST-ADL Domain Model Specification version V2.1.12

42 (244)

6.2.2 Allocation (from FunctionModeling)

Generalizations

 EAElement (from Elements)

Description
The Allocation element contains function allocations. It can bundle function allocations that belong
together, e.g., all function allocations for a simulation.

Attributes
No additional attributes

Associations

 functionAllocation : FunctionAllocation [*] {composite}

The owned FunctionAllocations.

Constraints
No additional constraints

Semantics
The Allocation element contains function allocations, i.e., it can bundle function allocations that
belong together.

6.2.3 AnalysisFunctionPrototype (from FunctionModeling)

Generalizations

 FunctionPrototype (from FunctionModeling)

Description
The AnalysisFunctionPrototype represents references to the occurrence of the
AnalysisFunctionType that types it when it acts as a part.

The AnalysisFunctionPrototype is typed by an AnalysisFunctionType.

Attributes
No additional attributes

Associations

 type : AnalysisFunctionType [1]

«isOfType»

The type that defines this AnalysisFunctionPrototype.

Constraints
No additional constraints

Semantics
The AnalysisFunctionPrototype represents an occurrence of the AnalysisFunctionType that types
it.

6.2.4 AnalysisFunctionType (from FunctionModeling)

Generalizations

 FunctionType (from FunctionModeling)

Description
The AnalysisFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The AnalysisFunctionType is used

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionAllocation
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionType

EAST-ADL Domain Model Specification version V2.1.12

43 (244)

to model the functional structure on AnalysisLevel. The syntax of AnalysisFunctionTypes is
inspired from the type-prototype pattern used by AUTOSAR.

The AnalysisFunctions may interact with other AnalysisFunctions (i.e., also FunctionalDevices)
through their FunctionPorts.

Furthermore, an AnalysisFunction may be decomposed into contained parts that are
AnalysisFunctionPrototypes. This allows the functionalities provided by the parent
AnalysisFunction to be broken up hierarchically into sub-functionalities.

A FunctionBehavior may be associated with each AnalysisFunction. In the case where the
AnalysisFunction is decomposed, the behavior is a specification for the composed behavior of the
parts.

Attributes
No additional attributes

Associations

 part : AnalysisFunctionPrototype [*] {composite}

The parts contained in this AnalysisFunctionType.

Constraints
No additional constraints

Semantics
The AnalysisFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level AnalysisFunction. The AnalysisFunction represents the analysis
function used to describe the functionalities provided by a vehicle on the AnalysisLevel. At the
AnalysisLevel, AnalysisFunctions are defined and structured according to the functional
requirements, i.e., the functionalities provided to the user.

6.2.5 BasicSoftwareFunctionType (from FunctionModeling)

Generalizations

 DesignFunctionType (from FunctionModeling)

Description
The BasicSoftwareFunctionType allow for the representation of a layered architecture of
functionality on the DesignLevel. A BasicSoftwareFunctionType then represents a function in the
service layer.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The BasicSoftwareFunctionType is an abstraction of the middleware.

6.2.6 ClientServerKind (from FunctionModeling) «enumeration»

Generalizations
None

file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType

EAST-ADL Domain Model Specification version V2.1.12

44 (244)

Description
This element is an enumeration for the kind of the FunctionClientServerPort, which can either be a
"client" or a "server".

Enumeration Literals

 client

 server

Associations
No additional associations

Constraints
No additional constraints

Semantics
The ClientServerKind is an enumeration with literals that are used to distinguish between client
and server.

6.2.7 DesignFunctionPrototype (from FunctionModeling)

Generalizations

 AllocateableElement (from FunctionModeling)

 FunctionPrototype (from FunctionModeling)

Description
The DesignFunctionPrototype represents references to the occurrence of the DesignFunctionType
that types it when it acts as a part.

The DesignFunctionPrototype is typed by a DesignFunctionType.

Attributes
No additional attributes

Associations

 type : DesignFunctionType [1]

«isOfType»

The type that defines this DesignFunctionPrototype.

Constraints
No additional constraints

Semantics
The DesignFunctionPrototype represents an occurrence of the DesignFunctionType that types it.

6.2.8 DesignFunctionType (from FunctionModeling)

Generalizations

 FunctionType (from FunctionModeling)

Description
The DesignFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The DesignFunctionType is used to
model the functional structure on DesignLevel. The syntax of DesignFunctionTypes is inspired by
the type-prototype pattern used by AUTOSAR.

The DesignFunctions may interact with other DesignFunctions (i.e., also BasicSoftwareFunctions,
HardwareFunctions, and LocalDeviceManagers) through their FunctionPorts.

file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionType

EAST-ADL Domain Model Specification version V2.1.12

45 (244)

Furthermore, a DesignFunction may be decomposed into the contained parts that are
DesignFunctionPrototypes. This allows the functionalities provided by the parent DesignFunction
to be broken up hierarchically into sub-functionalities.

Execution time constraints on the DesignFunctionType can be expressed by
ExecutionTimeConstraints, see the Timing package.

If two or more occurrences of an elementary Function are allocated on the same ECU, the code
will be placed on the ECU only once (so these occurrences will use the same code but separate
memory areas for data).

Attributes
No additional attributes

Associations

 part : DesignFunctionPrototype [*] {composite}

The parts contained in this DesignFunctionType.

Constraints
No additional constraints

Semantics
The DesignFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level DesignFunction. The DesignFunction represents the design function
used to describe the functionalities provided by a vehicle on the DesignLevel. At the DesignLevel,
DesignFunctions are defined and structured according to the functional and hardware system
design.

6.2.9 EADirectionKind (from FunctionModeling) «enumeration»

Generalizations
None

Description
This element is an enumeration for the direction of a Port, which can either be "in", "out", or
"inout".

Enumeration Literals

 in

 inout

 out

Associations
No additional associations

Constraints
No additional constraints

Semantics
The EADirectionKind is an enumeration with literals describing the direction of ports.

6.2.10 FunctionalDevice (from FunctionModeling)

Generalizations

 AnalysisFunctionType (from FunctionModeling)

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23AnalysisFunctionType

EAST-ADL Domain Model Specification version V2.1.12

46 (244)

Description
The FunctionalDevice represents an abstract sensor or actuator that encapsulates sensor/actuator
dynamics and the interfacing software. The FunctionalDevice is the interface between the
electronic architecture and the environment (connected by ClampConnectors, see the
Environment chapter). As such, it is a transfer function between the AnalysisFunction and the
physical entity that it measures or actuates.

A Realization dependency can be used for traceability from LocalDeviceManagers in the
DesignLevel and Sensors/Actuators in the hardware design architecture that are represented by
the FunctionalDevice.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints.

Semantics
The behavior associated with the FunctionalDevice is the transfer function between the
environment model representing the environment and an AnalysisFunction. The transfer function
represents the sensor or actuator and its interfacing hardware and software (connectors,
electronics, in/out interface, driver software, and application software).

6.2.11 FunctionAllocation (from FunctionModeling)

Generalizations

 EAElement (from Elements)

Description
FunctionAllocation represents an allocation constraint binding an AllocateableElement
(computation functions or communication connectors) on an AllocationTarget (computation or
communication resource).

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 allocatedElement : AllocateableElement [1]

«instanceRef»

 target : AllocationTarget [1]

«instanceRef»

Constraints
No additional constraints

Semantics
FunctionAllocation specifies that the identified AllocationTarget is a host for the identified
AllocateableElement.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget

EAST-ADL Domain Model Specification version V2.1.12

47 (244)

6.2.12 FunctionClientServerInterface (from FunctionModeling) «atpType»

Generalizations

 TraceableSpecification (from Elements)

Description
The FunctionClientServerInterface is used to specify the operations in FunctionClientServerPorts.

Attributes
No additional attributes

Associations

 operation : Operation [*] {composite}

The owned Operation.

Constraints
No additional constraints

Semantics
The operations of the FunctionClientServerInterface are required or provided through the
FunctionClientServerPorts typed by the FunctionClientServerInterface.

6.2.13 FunctionClientServerPort (from FunctionModeling)

Generalizations

 FunctionPort (from FunctionModeling)

Description
The FunctionClientServerPort is a FunctionPort for client-server interaction. A number of
FunctionClientServerPorts of clientServerType "client" can be connected to one
FunctionClientServerPort of clientServerType "server", i.e. when connected the multiplicity for the
connection is n to 1 for client and server.

Attributes

 kind : ClientServerKind [1]

Associations

 type : FunctionClientServerInterface [1]

«isOfType»

The interface of this FunctionClientServerPort.

Constraints
[1] A FunctionClientServerPort of clientServerType "client" can only be connected to one
FunctionClientServerPort of clientServerType "server".

Semantics
The FunctionClientServerPort is a FunctionPort for client-server interaction.

FunctionClientServerPorts are single buffer overwrite and nonconsumable.

6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement»

Generalizations

 AllocateableElement (from FunctionModeling)

 EAConnector (from Elements)

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Operation
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionClientServerInterface
file:///C:/Volvo/MAENAD/index.html%23AllocateableElement
file:///C:/Volvo/MAENAD/index.html%23EAConnector

EAST-ADL Domain Model Specification version V2.1.12

48 (244)

 EAElement (from Elements)

Description
The FunctionConnector indicates that the connected FunctionPorts exchange signals or client-
server requests/responses.

A FunctionConnector used to connect ports of parts within a FunctionType is called an assembly
connector. A FunctionConnector between a port of a part and a port of the FunctionType itself is
called a delegation connector.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 port : FunctionPort [2]

«instanceRef»

Constraints
[1] Can connect two FunctionFlowPorts of different directions when this is an assembly
FunctionConnector.

[2] Can connect two FunctionFlowPorts of the same direction when this is a delegation
FunctionConnector.

[3] Can connect two ClientServerPorts of different kinds when this is an assembly
FunctionConnector.

[4] Can connect two ClientServerPorts of the same kind when this is a delegation
FunctionConnector.

[5] Can connect two FunctionFlowPorts with direction inout.

Semantics
The FunctionConnector connects a pair of FunctionFlowPorts or FunctionClientServerPorts. If two
FunctionFlowPorts are connected, data elements of the type of the output FunctionFlowPort flow
from the output FunctionFlowPort to the input FunctionFlowPort. If FunctionClientServerPorts are
connected, the client calls the server according to the operations of the interfaces.

The FunctionPrototype with the connected port has to be identified by the FunctionConnector as
well.

The FunctionConnector is normally routed according to the hardware topology and the allocation
of source and destination. If there are redundant paths, a FunctionAllocation may be used to
prescribe allocation.

6.2.15 FunctionFlowPort (from FunctionModeling)

Generalizations

 FunctionPort (from FunctionModeling)

Description
The FunctionFlowPort is a metaclass for flowports, inspired by the SysML FlowPort.

Attributes

 direction : EADirectionKind [1]

Associations

 type : EADatatype [1]

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

49 (244)

«isOfType»

The single EADatatype for this port.

 defaultValue : EAValue [0..1] {composite}

Constraints
No additional constraints

Semantics
FunctionFlowPorts are single buffer overwrite and nonconsumable.

FunctionFlowPorts can be connected if their FunctionPort signatures match; i.e.:

EADatatypes that are ValueTypes are compatible if

* They have the same "dimension".

* They have the same "unit".

EADatatypes that are RangeableValueTypes are compatible if

* The source EADatatype has the same or better "accuracy".

* They have the same baseRangeable.

* The source EADatatype has the same or smaller "maxValue".

* The source EADatatype has the same or higher "minValue".

* The source EADatatype has the same or higher "resolution".

* They have the same "significantDigits".

EADatatypes that are EnumerationValueTypes are compatible if

* They have the same baseEnumeration.

A FunctionFlowPort with direction=in is called an input FunctionFlowPort:

The input FunctionFlowPort indicates that the containing Function requires input data. The
EADatatype of this data is defined by the associated EADatatype. The data is sampled at the
invocation of the containing entity for discrete Functions. For continuous Functions, the input
FunctionFlowPort represents a continuous input connection point.

The input FunctionFlowPort declares a reception point of data. It represents a single element
buffer, which is overridden with the latest data. The type of the data is defined by the associated
EADatatype.

A FunctionFlowPort with direction=out is called an output FunctionFlowPort:

The output FunctionFlowPort indicates that the containing Function provides output data. The
EADatatype of this data is defined by the associated EADatatype. The data is sent at the
completion of the containing entity for discrete Functions. For continuous Functions, the output
FunctionFlowPort represents a (time-)continuous output connection point.

The output FunctionFlowPort declares a transmission point of data. The type of the data is defined
by the associated EADatatype.

6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

 EAPort (from Elements)

 EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

50 (244)

Description
The ports conserve variables for component interaction.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Subclasses of the abstract class FunctionPort add their own semantics.

6.2.17 FunctionPowerPort (from FunctionModeling)

Generalizations

 FunctionPort (from FunctionModeling)

Description
The FunctionPowerPort is a FunctionPort for denoting the physical interactions between
environment and sensing/actuation functions.

Attributes
No additional attributes

Associations

 type : CompositeDatatype [1]

«isOfType»

The Datatype for the flow physical variables of this FunctionPowerPort, specifying the
Across and Through variables with two separate datatypePrototypes.

Constraints
[1] The owner of a FunctionPowerPort is either a FunctionalDevice or a HardwareFunctionType.
Alternatively it is owned by a FunctionType typing a prototype in Environment.

[2] Two connected FunctionPowerPort must have the same Datatype.

[3] The typing Datatype shall have two datatypePrototypes called Across and Through, with
Datatypes that are consistent and representing the variables of the PowerPort.

Semantics
The FunctionPowerPort conserves physical variables in a dynamic process.

The typing CompositeDatatype owns two EADatatypePrototypes called Across and Through,
representing the exchanged physical variables of the FunctionPowerPort. In two or more directly
connected function power ports, the Across variables always get the same value and the Through
variables always sum up to zero.

6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

 EAElement (from Elements)

 EAPrototype (from Elements)

file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23CompositeDatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAPrototype

EAST-ADL Domain Model Specification version V2.1.12

51 (244)

Description
FunctionPrototype represents a reference to the occurrence of a FunctionType when it acts as a
part.

A concrete specialization of the FunctionPrototype is typed by a concrete specialization of
FunctionType.

FunctionTrigger in the Behavior package is associated with a FunctionPrototype.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The FunctionPrototype is an abstract concept with concrete specializations for the use on the
AnalysisLevel and DesignLevel.

6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType»

Generalizations

 EAType (from Elements)

 Context (from Elements)

Description
The abstract metaclass FunctionType abstracts the function component types that are used to
model the functional structure, which is distinguished from the implementation of component types
using AUTOSAR. The syntax of FunctionTypes is inspired from the concept of Block from SysML.

FunctionBehavior and FunctionTrigger in the Behavior package are associated to a FunctionType.

Attributes

 isElementary : Boolean [1]

True, when this type must not have any parts.

Associations

 port : FunctionPort [*] {composite}

Owned ports.

 connector : FunctionConnector [*] {composite}

The connectors that connect ports of parts as assembly connectors or ports of this type
and ports of parts as delegation connectors.

 portGroup : PortGroup [*] {composite}

Grouping of ports owned by this element.

Constraints
[1] Elementary FunctionTypes shall not have parts.

Semantics
The FunctionType abstracts the function component types that are used to model the functional
structure on AnalysisLevel and DesignLevel.

Leaf functions of an EAST-ADL function hierarchy are called elementary Functions.

file:///C:/Volvo/MAENAD/index.html%23EAType
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23FunctionConnector
file:///C:/Volvo/MAENAD/index.html%23PortGroup

EAST-ADL Domain Model Specification version V2.1.12

52 (244)

Elementary Functions have synchronous execution semantics:

1. Read inputs

2. Execute (duration: Execution time)

3. Write outputs

Execution is defined by a behavior that acts as a transfer function.

Subclasses of the abstract class FunctionType add their own semantics.

If a behavior is attached to the FunctionType, the execution semantic for a discrete elementary
FunctionType complies with the run-to-completion semantic. This has the following implications:

1. Input that arrives at the input FunctionPorts after execution begins will be ignored until the next
execution cycle.

2. If more than one input value arrives per FunctionPort before execution begins, the last value will
override all previous ones in the public part of the input FunctionPort (single element buffers for
input).

3. The local part of a FunctionPort does not change its value during execution of the behavior.

4. During an execution cycle, only one output value can be sent per FunctionPort. If consecutive
output values are produced on the same FunctionPort during a single execution cycle, the last
value will override all previous ones on the output FunctionPort (single element buffers for output).

5. Output will not be available at an output FunctionPort before execution ends.

6. Elementary FunctionTypes may not produce any side effects (i.e., all data passes the
FunctionPorts).

6.2.20 HardwareFunctionType (from FunctionModeling)

Generalizations

 DesignFunctionType (from FunctionModeling)

Description
The HardwareFunctionType is the transfer function for the identified HardwareComponentType or
a specification of an intended transfer function. HardwareFunctionType types
DesignFunctionPrototypes in the FunctionalDesignArchitecture. The ports of such
DesignFunctionPrototypes are typically connected to a plant model with ClampConnectors.

DesignFunctionPrototypes typed by HardwareFunctionType may be allocated to
HardwareComponents in which case the HardwareFunctionType must match the
HardwareFunctionType of the target HardwareComponent. Typically, the same
HardwareFunctionType types the prototype that is allocated to its target HardwareComponent.

HardwareFunctionTypes are typically transfer functions of sensors, actuators, amplifiers and other
peripherals with a fixed transfer function. Thus, HardwareFunctionTypes are generally not defined
for ECUNodes.

Attributes
No additional attributes

Associations

 hardwareComponent : HardwareComponentType [0..1]

The HardwareComponentType with the specified HardwareFunction.

Constraints
[1] A DesignFunctionPrototype typed by a HardwareFunctionType shall be connected to the
EnvironmentModel via ClampConnectors and to BasicSoftwareFunctions via FunctionConnectors.

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

53 (244)

[2] A HardwareFunctionType shall only contain prototypes typed by HardwareFunctionType.

Semantics
The HardwareFunctionType is the transfer function for the associated hardware components such
as sensors, actuators, amplifiers, etc or a specification of an intended transfer function.

A DesignFunctionPrototype typed by a HardwareFunctionType allocated to Sensors or Actuators
is the interfacing element to the plant model.

6.2.21 LocalDeviceManager (from FunctionModeling)

Generalizations

 DesignFunctionType (from FunctionModeling)

Description
The LocalDeviceManager represents a DesignFunction that act as a manager or functional
interface to Sensors, Actuators and other devices. It is responsible for translating between the
electrical/logical interface of the device, as provided by a BasicSoftwareFunction, and the physical
interface of the device. For example, consider a temperature sensor with voltage output. The
HardwareFunctionType defines the transfer from temperature to voltage. A BasicSoftwareFunction
relays the voltage from the microcontroller's I/O. The role of the LocalDeviceManager is now to
translate from voltage to temperature value, taking into account the sensor's characteristics such
as nonlinearities, calibration, etc. The resulting temperature is available to the other
DesignFunctions. By separating the device specific part from the middleware and ECU specific
parts, it is possible to systematically change interface function together with the device.

The role of the LocalDeviceManager is to act as an interface between the electrical output of
Sensors or electrical input of Actuators and the physical quantity of those devices.

Attributes
No additional attributes

Associations
No additional associations

Constraints
[1] A DesignFunctionPrototype typed by a LocalDeviceManager shall be allocated to the same
ECU node as the device that it manages is connected to.

[2] A LocalDeviceManager shall be connected with BasicSoftwareFunction(s) and
DesignFunction(s).

Semantics
The LocalDeviceManager encapsulates the device-specific or functional parts of a Sensor or
Actuator, device, etc. interface.

6.2.22 Operation (from FunctionModeling)

Generalizations

 EAElement (from Elements)

Description
The Operation is the provided/required operation of a FunctionClientServerInterface. It can specify
its return values and arguments by EADatatypePrototypes.

Attributes
No additional attributes

file:///C:/Volvo/MAENAD/index.html%23DesignFunctionType
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

54 (244)

Associations

 argument : EADatatypePrototype [*] {ordered} {composite}

The argument value of the Operation.

 return : EADatatypePrototype [0..1] {composite}

The return value of the Operation.

Constraints
No additional constraints

Semantics
The Operation is the provided/required operation of a FunctionClientServerInterface.

6.2.23 PortGroup (from FunctionModeling)

Generalizations

 EAElement (from Elements)

Description
The PortGroup represents several FunctionPorts grouped into one. All FunctionPorts that are part
of a PortGroup are graphically represented as a single FunctionPort. The PortGroup has no
semantic meaning except that it makes graphical representation of the connected FunctionPorts
easier to read, and provides a means to logically organize several FunctionPorts into one group.

Connectors are still connected to the contained FunctionPorts, but tool support may simplify
connections by allowing semiautomatic or automatic connection to all FunctionPorts of a
PortGroup.

Note that the term "PortGroup" is also used by AADL.

Attributes
No additional attributes

Associations

 port : FunctionPort [*]

The grouped FunctionPorts.

 portGroup : PortGroup [*] {composite}

Grouping of ports owned by this element.

Constraints
[1] The FunctionPorts in a PortGroup must all be of the same component; all FunctionPorts in a
PortGroup must be of the same kind (FunctionFlowPort with same EADirectionKind or
FunctionClientServerPort with same ClientServerKind).

Semantics
The PortGroup provides the means to organize FunctionPorts and FunctionConnectors. It does
not add semantics. In the model, the FunctionPorts contained in the PortGroup are connected as
individual FunctionPorts.

file:///C:/Volvo/MAENAD/index.html%23EADatatypePrototype
file:///C:/Volvo/MAENAD/index.html%23EADatatypePrototype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23PortGroup

EAST-ADL Domain Model Specification version V2.1.12

55 (244)

7 HardwareModeling

7.1 Overview

The package HardwareModeling contains the elements to model physical entities of the
embedded electrical/electronic system. These elements allow the hardware to be captured in
sufficient detail to allow preliminary allocation decisions.

The allocation decisions are based on requirements on timing, storage, data throughput,
processing power, etc. that are defined in the Functional Analysis Architecture and the Functional
Design Architecture.

Conversely, the Functional Analysis Architecture and the Functional Design Architecture may be
revised based on analysis using information from the Hardware Design Architecture. An example
is control law design, where algorithms may be modified for expected computational and
communication delays. Thus, the Hardware Design Architecture contains information about
properties in order to support, e.g., timing analysis and performance in these respects.

Figure 8. Diagram for HardwareModeling.

7.2 Element Descriptions

7.2.1 Actuator (from HardwareModeling)

Generalizations

 HardwareComponentType (from HardwareModeling)

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

56 (244)

Description
The Actuator is the element that represents electrical actuators, such as valves, motors, lamps,
brake units, etc. Non-electrical actuators such as the engine, hydraulics, etc. are considered part
of the plant model (environment). Plant models are not part of the Hardware Design Architecture.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Actuator metaclass represents the physical and electrical aspects of actuator hardware. The
logical aspect is represented by a HardwareFunctionType associated with the Actuator.

7.2.2 AllocationTarget (from HardwareModeling) {abstract}

Generalizations

 EAElement (from Elements)

Description
The AllocationTarget is a superclass for elements to which AllocateableElements can be allocated.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
An AllocationTarget is a resource element in the Hardware Design Architecture which may host
functional behaviors in the Functional Design Architecture.

7.2.3 CommunicationHardwarePin (from HardwareModeling)

Generalizations

 HardwarePin (from HardwareModeling)

Description
CommunicationHardwarePin represents an electrical connection point that can be used to define
how the wire harness is logically defined.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The CommunicationHardwarePin represents the hardware connection point of a communication
bus.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23HardwarePin

EAST-ADL Domain Model Specification version V2.1.12

57 (244)

Depending on modeling style, one or two pins may be defined for a dual-wire bus.

7.2.4 ElectricalComponent (from HardwareModeling) «atpType»

Generalizations

 HardwareComponentType (from HardwareModeling)

Description
ElectricalComponent represents a hardware element as e.g. relays, batteries, capacitors and other
non-computational, non-interactional (with plant) elements.

Attributes

 isActive : Boolean [1]

Indicates if the PowerSupply is active or passive.

Associations
No additional associations

Constraints
No additional constraints

Semantics
ElectricalComponent may be active (e.g., a battery) or passive (main relay).

7.2.5 HardwareBusKind (from HardwareModeling) «enumeration»

Generalizations
None

Description
HardwareBusKind is an enumeration type representing different kinds of busses.

Enumeration Literals

 EventTriggered

Bus is event-triggered

 other

Another type of bus communication

 TimeAndEventTriggered

Bus is both time and event-triggered

 TimeTriggered

Bus is time-triggered

Associations
No additional associations

Constraints
No additional constraints

Semantics
HardwareBusKind represents the kind of a hardware connector as given by the definition of the
respective Enumeration Literal.

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

58 (244)

7.2.6 HardwareComponentPrototype (from HardwareModeling) «atpPrototype»

Generalizations

 EAPrototype (from Elements)

 AllocationTarget (from HardwareModeling)

Description
Appears as part of a HardwareComponentType and is itself typed by a HardwareComponentType.
This allows for a reference to the occurrence of a HardwareComponentType when it acts as a
part. The purpose is to support the definition of hierarchical structures, and to reuse the same type
of Hardware at several places. For example, a wheel speed sensor may occur at all four wheels,
but it has a single definition.

Attributes
No additional attributes

Associations

 type : HardwareComponentType [1]

«isOfType»

Constraints
No additional constraints

Semantics
The HardwareComponentPrototype represents an occurrence of a hardware element, according to
the type of the HardwareComponentPrototype.

7.2.7 HardwareComponentType (from HardwareModeling) «atpType»

Generalizations

 EAType (from Elements)

 Context (from Elements)

Description
The HardwareComponentType represents a hardware element on an abstract level, allowing
preliminary engineering activities related to hardware.

Attributes
No additional attributes

Associations

 portConnector : HardwarePortConnector [*] {composite}

 connector : HardwareConnector [*] {composite}

Connectors owned by this element.

 part : HardwareComponentPrototype [*] {composite}

Parts owned by this element.

 pin : HardwarePin [*] {composite}

Hardware pins owned by this type.

 port : HardwarePort [*] {composite}

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAPrototype
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType
file:///C:/Volvo/MAENAD/index.html%23EAType
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23HardwarePortConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePort

EAST-ADL Domain Model Specification version V2.1.12

59 (244)

Semantics
The HardwareComponentType is a structural entity that defines a part of an electrical architecture.
Through its ports it can be connected to electrical sources and sinks. Its logical behavior, the
transfer function, may be defined in a HardwareFunctionType referencing the
HardwareComponentType. This is typically connected through its ports to the environment model
to participate in the end-to-end behavioral definition of a function.

7.2.8 HardwareConnector (from HardwareModeling) «atpStructureElement»

Generalizations

 EAConnector (from Elements)

 EAElement (from Elements)

Description
Hardware connectors represent wires that electrically connect the hardware components through
its pins.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 pin : HardwarePin [2]

«instanceRef»

Constraints
No additional constraints

Semantics
The connector joins the two referenced pins electrically.

7.2.9 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement»

Generalizations

 EAPort (from Elements)

 EAElement (from Elements)

Description
HardwarePin represents electrical connection points in the hardware architecture. Depending on
modeling style, the actual wire or a logical connection can be considered.

Attributes

 direction : EADirectionKind [0..1]

The direction of current through the pin.

 isGround : Boolean [0..1]

Indicates that the pin is connected to ground.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAConnector
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

60 (244)

Semantics
Hardware pin represents an electrical connection point.

7.2.10 HardwarePort (from HardwareModeling) «atpStructureElement»

Generalizations

 AllocationTarget (from HardwareModeling)

 EAPort (from Elements)

Attributes

 isShield : Boolean [1]

True if this port is representing the shield.

Associations

 referencedPin : HardwarePin [*]

 containedPin : HardwarePin [*] {composite}

 containedPort : HardwarePort [*] {composite}

Constraints
No additional constraints

Semantics
-

7.2.11 HardwarePortConnector (from HardwareModeling) «atpStructureElement»

Generalizations

 AllocationTarget (from HardwareModeling)

 EAConnector (from Elements)

Attributes

 busSpeed : Float [1]

 busType : HardwareBusKind [1]

Associations

 connector : HardwareConnector [*] {composite}

Dependencies

 port : HardwarePort [2]

«instanceRef»

Constraints
No additional constraints

Semantics
-

7.2.12 IOHardwarePin (from HardwareModeling)

Generalizations

 HardwarePin (from HardwareModeling)

file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePort
file:///C:/Volvo/MAENAD/index.html%23AllocationTarget
file:///C:/Volvo/MAENAD/index.html%23EAConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareConnector
file:///C:/Volvo/MAENAD/index.html%23HardwarePort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin

EAST-ADL Domain Model Specification version V2.1.12

61 (244)

Description
IOHardwarePin represents an electrical connection point for digital or analog I/O.

Attributes

 type : IOHardwarePinKind [1]

kind defines whether the IOHardwarePort is digital, analog or PWM (Pulse Width
Modulated).

Associations
No additional associations

Constraints
No additional constraints

Semantics
The IOHardwarePin represents an electrical pin or connection point.

7.2.13 IOHardwarePinKind (from HardwareModeling) «enumeration»

Generalizations
None

Description
IOHardwarePinKind is an enumeration type representing different kinds of I/O Hardware Ports.

Enumeration Literals

 analog

I/O with varying amplitude.

 digital

I/O with fixed amplitude.

 other

Another type of I/O port.

 pwm

PWM (Pulse Width Modulated) modulated I/O, i.e. a signal with fixed frequency and
amplitude but varying duty cycle.

Associations
No additional associations

Constraints
No additional constraints

Semantics
IOHardwarePinKind represents the kind of IOHardwarePin as given by the definition of the
respective Enumeration Literal.

7.2.14 Node (from HardwareModeling)

Generalizations

 HardwareComponentType (from HardwareModeling)

Description
Node represents the computer nodes of the embedded electrical/electronic system. Nodes consist
of processor(s) and may be connected to sensors, actuators and other ECUs via a BusConnector.

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

62 (244)

Node denotes an electronic control unit that acts as a computing element executing Functions. In
case a single CPU ECU is represented, it is sufficient to have a single, non-hierarchical Node.

Attributes

 executionRate : Float = 1.0 [1]

ExecutionRate is used to compute an approximate execution time. A nominal execution
time divided by executionRate provides the actual execution time to be used e.g. for timing
analysis in feasibility studies.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Node element represents an ECU, i.e. an Electronic Control Unit, and an allocation target of
FunctionPrototypes.

The Node executes its allocated FunctionPrototypes at the specified executionRate. The
executionRate denotes how many execution seconds of an allocated functionPrototype´s
execution time are processed in each real-time second. Actual execution time is thus found by
dividing the parameters of the ExecutionTimeConstraint with executionRate.

Example: If an ECU is 25% faster than a standard ECU (e.g., in a certain context, execution times
are given assuming a nominal speed of 100 MHz; our CPU is then 125 MHz), the executionRate is
1.25. An execution time of 5 ms would then become 4 ms on this ECU.

7.2.15 PowerHardwarePin (from HardwareModeling)

Generalizations

 HardwarePin (from HardwareModeling)

Description
PowerHardwarePin represents a pin that is primarily intended for power supply, either providing or
consuming energy.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
A PowerHardwarePin is primarily intended to be a power supply. The direction attribute of the pin
defines whether it is providing or consuming energy.

7.2.16 Sensor (from HardwareModeling)

Generalizations

 HardwareComponentType (from HardwareModeling)

Description
Sensor represents a hardware entity for digital or analog sensor elements. The Sensor is
connected electrically to the electrical entities of the Hardware Design Architecture.

file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType

EAST-ADL Domain Model Specification version V2.1.12

63 (244)

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Sensor denotes an electrical sensor. The Sensor represents the physical and electrical aspects of
sensor hardware. The logical aspect is represented by a HardwareFunctionType associated with
the Sensor.

EAST-ADL Domain Model Specification version V2.1.12

64 (244)

8 Environment

8.1 Overview

The Environment model is used to describe the environment of the vehicle electric and electronic
architecture. It is modeled by continuous functions representing the system environment.

Figure 9. Diagram for Environment. The EnvironmentModel is a packageable element, but note that
it is not a part of the SystemModel.

8.2 Element Descriptions

8.2.1 ClampConnector (from Environment) «atpStructureElement»

Generalizations

 EAElement (from Elements)

Description
The clamp connector connects ports across function boundaries and containment hierarchies. It is
used to connect from an EnvironmentModel to the FunctionalAnalysisArchitecture, the
FunctionalDesignArchitecture, the autosarSystem or another EnvironmentModel. Typically, the
EnvironmentModel contains physical ports, which restrict the valid ports in the
FunctionalAnalysisArchitecture to those on FunctionalDevices and in the
FunctionalDesignArchitecture to those on HardwareFunctions. In case the connection concerns
logical interaction, this restriction does not apply. The ClampConnector is always an assembly
connector, never a delegation connector.

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

65 (244)

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 port : FunctionPort [2]

«instanceRef»

Constraints
[1] Can connect two FunctionFlowPorts of different direction.

[2] Can connect two FunctionClientServerPorts of different clientServerType.

[3] Can connect two FunctionFlowPorts with direction inout.

[4] Cannot connect ports in the same SystemModel.

Semantics
ClampConnectors represents the interaction link between a functional model of the EE
Architecture and the functional model of the plant.

8.2.2 Environment (from Environment)

Generalizations

 Context (from Elements)

Description
The collection of the environment functional descriptions. This collection can be done across the
EAST-ADL abstraction levels.

An environment model can contain functionPrototypes given by either AnalysisFunction or
DesignFunction. The environment model does not have abstraction levels as in the system model
(e.g., analysisLevel, designLevel).

A functionPrototype of the environment model can have interactions with FAA FunctionalDevice
and an FDA HardwareFunction through the ClampConnector.

Attributes
No additional attributes

Associations

 environmentModel : FunctionPrototype [0..1] {composite}

 clampConnector : ClampConnector [*] {composite}

Constraints
No additional constraints

Semantics
Environment is a container element for the entities surrounding the EE architecture and their
connections to the EE architecture. The function hierarchy of the Environment interacts with the
EE System through Clamp Connectors connected to the SystemModel's functions.

file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23ClampConnector

EAST-ADL Domain Model Specification version V2.1.12

66 (244)

Part III Behavioral Constructs

This part specifies the dynamic, behavioral constructs represented by metaclasses in EAST-ADL.

EAST-ADL Domain Model Specification version V2.1.12

67 (244)

9 Behavior

9.1 Overview

This chapter describes the behavioral constructs of the EAST-ADL language. What we mean by
behavior here is either a function performing some computation on provided data (FlowPort
interaction) or the execution of a service called upon by another function (in a ClientServer
interaction).

The execution of the behavior assumes a strict run-to-completion, single buffer-overwrite
management of data. That is, each execution starts with the reading of data, which are not stored
locally and are constantly replaced by fresh data arriving on ports. The function then performs
some calculation and finally outputs some data on the output ports. The execution is non-
concurrent within an elementary function: only one behavior is active at any point in time. Among a
set of functions, behavior is fully concurrent, except for timing precedence constraints. This is to
avoid making assumptions that are not met at Design and Implementation Levels. Design Level:
All functions are as concurrent as hardware design allows. Timing precedence constraints may
constrain this further.

A FunctionBehavior in EAST-ADL is mainly a reference point to some description provided
elsewhere (outside the EAST-ADL model) in a tool-dependent format, as depicted in the diagram
for the behavior of a function below. This enables reuse of current behavior descriptions contained
in the tools currently used by automotive companies and suppliers. Given that, requirements and
traceability information can be provided for behavior in relation to the rest of the EAST-ADL model.
A list of typical tool formats is provided as an enumeration, FunctionBehaviorKind. Depending on
the EAST-ADL language implementation, such a behavior description can be provided in the
model itself; for instance, when using a UML implementation of the EAST-ADL, UML behavior
modeling can be used. Yet, it should be noted that the behavior described shall be compliant with
the execution semantics of an EAST-ADL function.

The rest of the behavioral constructs (see the following diagram of the behavior model
organization) relates to the organization of the triggering of behavior attached to functions. At a
high level one can define activation Modes, which may span across the whole architecture. Such
Modes can be regrouped in exclusive sets. Whenever a FunctionTrigger or a FunctionBehavior
refers to a Mode, this means its activation is dependent on the Mode being active or not. Thus,
different execution configurations can be defined.

Triggering of the behavior itself, defined by the FunctionTrigger, can be either time- or event-
based and be either type-wise or prototype-wise to allow further adjustments of functions in a
particular context. Events and timing constraints are defined in the Timing, Events, and
TimingConstraints sections.

EAST-ADL Domain Model Specification version V2.1.12

68 (244)

Figure 10. Diagram for the behavior of a function.

Figure 11. Diagram for behavior model organization.

9.2 Element Descriptions

9.2.1 Behavior (from Behavior)

Generalizations

 Context (from Elements)

Description
Behavior is a container of FunctionBehaviors. It enables grouping of the behaviors assigned to
functions in a particular context on which TraceableSpecifications can be applied. This can take

file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

69 (244)

any appropriate form depending on the language implementation (for instance in a UML
implementation it could be a Package).

The collection of functional behaviors can be performed across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

 behavior : FunctionBehavior [*] {composite}

This is the set of FunctionBehaviors managed by the container.

 modeGroup : ModeGroup [*] {composite}

The contained mode groups.

 functionTrigger : FunctionTrigger [*] {composite}

Constraints
No additional constraints

Semantics
This element has the same role and semantics as Context, but for behavioral aspects.

9.2.2 FunctionBehavior (from Behavior)

Generalizations

 Context (from Elements)

Description
FunctionBehavior represents the behavior of a particular FunctionType - referred to by the
association to FunctionType. What is meant by behavior is a transfer function performing some
data computation (in case of FlowPort interaction) or an operation that can be called by another
function (in case of ClientServer interaction). The representation property indicates the kind of
representation used to describe the behavior (see FunctionBehaviorKind). The representation
itself (e.g., defined in an external model file) is identified by a URL String in the path property. If
the representation is provided in the same model file as the system itself, the path property is not
used. It is merely a placeholder for the purpose of containing information about and links to the
external behavioral model.

FunctionBehavior may refer to execution modes by the association to the element Mode. This is
not mandatory; however, when provided, the relation indicates the list of execution Modes in which
the FunctionBehavior can potentially be executed (see element Mode).

The triggering of a FunctionBehavior is unknown to the behavior. It is defined by FunctionTriggers
(see this element).

Note that the association between FunctionBehavior and FunctionType is specified as a one-way
navigable link from FunctionBehavior to FunctionType: what this means is that the EAST-ADL
language specification does not require a FunctionType be aware of the FunctionBehavior it is
assigned to. Only the navigation from behavior to function is mandatory; the implementation of a
reverse link might however be provided depending on the tool support.

Although each FunctionBehavior can refer to at most one FunctionType, note that several
FunctionBehaviors can refer to the same FunctionType. In this case, when a FunctionType has
several behaviors, only one behavior shall be active at any given time instant, i.e., no concurrent
behaviors are allowed in EAST-ADL functions. For instance we cannot have one active behavior in
Simulink and one in Modelica. Both can be referenced in the same function, but at any given time,
only one is executable. Conditions such as modes and variability must prevent two behaviors
being potentially active at the same time.

file:///C:/Volvo/MAENAD/index.html%23FunctionBehavior
file:///C:/Volvo/MAENAD/index.html%23ModeGroup
file:///C:/Volvo/MAENAD/index.html%23FunctionTrigger
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

70 (244)

Note also that FunctionBehaviors are assigned to FunctionTypes and not to FunctionPrototypes.
This means that among a set of FunctionPrototypes, which share the same type, behaviors are
also shared. However when a FunctionBehavior refer to Modes, which are referred to by different
FunctionTriggers, different triggering conditions can be provided among a set of
FunctionPrototypes for the same set of behaviors - see FunctionTrigger.

In the case where the identified FunctionType is decomposed into parts, the behavior is a
specification for the composed behavior of the FunctionType.

Attributes

 path : String [1]

The path to the file or model entity containing the behavior.

 representation : FunctionBehaviorKind [1]

The type of representation used to describe the behavior.

Associations

 function : FunctionType [0..1]

The FunctionType to which the behavior is assigned.

 mode : Mode [*]

The execution Modes in which the behavior can be potentially executed.

Constraints
No additional constraints

Semantics
The semantics of FunctionBehavior follows the semantics of the behavioral representation/tool
used (for instance SIMULINK, ASCET, etc.). However, in relation to the EAST-ADL model, the
FunctionBehavior has synchronous execution semantics:

1. Read inputs from input ports

2. Execute behavior with fixed inputs (run to completion)

3. Provide outputs to output ports

The data transfer between the EAST-ADL ports and the FunctionBehavior is representation/tool-
specific and considered part of the execution of the FunctionBehavior.

9.2.3 FunctionBehaviorKind (from Behavior) «enumeration»

Generalizations
None

Description
FunctionBehaviorKind is an enumeration, which lists the various standards or tools used to
describe a FunctionBehavior. It is used as a property of a FunctionBehavior. Several standards or
tools are listed; however, one can always extend this list by using the literal OTHER.

Enumeration Literals

 ASCET

 MARTE

 OTHER

 SCADE

 SCILAB

file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23Mode

EAST-ADL Domain Model Specification version V2.1.12

71 (244)

 SDL

 SIMULINK

 STATEMATE

 UML

Associations
No additional associations

Constraints
No additional constraints

Semantics
Distinction between UML and MARTE comes from the slight differences in the behavioral
definitions (namely concerning data-flow oriented behaviors).

It should be noted that though one can use several languages to provide a representation of a
FunctionBehavior, the semantics shall remain compliant with the overall EAST-ADL execution
semantics, see FunctionBehavior.

9.2.4 FunctionTrigger (from Behavior)

Generalizations

 EAExpression (from Values)

 EAElement (from Elements)

Description
FunctionTrigger represents the triggering parameters necessary to define the execution of an
identified FunctionType or FunctionPrototype. When referring to a FunctionType, a
FunctionTrigger applies to all FunctionPrototypes of the given type. When referring to a
FunctionPrototype, the trigger is only valid for this particular FunctionPrototype.

Triggering is defined either as event-driven or time-driven - depending on the property
triggerPolicy. If set to TIME, the timing constraint is defined with an event constraint associated
with the Function's or FunctionPrototype's EventFunction. The function event refers to the
activation of the function. If set to EVENT the referenced ports trigger the function using AND
semantics, i.e., activate the function.

In addition, a FunctionTrigger may refer to a list of Modes in which the trigger will be considered as
potentially active. As of FunctionBehaviors may also refer to Modes, it is possible to arrange
various function configurations for which different sets of triggers and behaviors are active. And
this, at various levels of granularity, either with a type-wise scope (by referring to a FunctionType)
or specifically at prototype level (by referring to a FunctionPrototype).

Note that several FunctionTriggers may be assigned to the same Function (Type or Prototype), for
instance to define alternative trigger conditions and/or timing constraints.

Attributes

 triggerPolicy : TriggerPolicyKind [1]

Defines the triggering policy, either EVENT or TIME. The function event refers to the
activation of the function. If set to EVENT, one or several ports of the Function triggers the
function, i.e., activates the function.

Associations

 port : FunctionPort [*]

The FunctionPorts that act as triggers individually or as specified in the triggerCondition.

file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FunctionPort

EAST-ADL Domain Model Specification version V2.1.12

72 (244)

 function : FunctionType [0..1]

The FunctionType that the FunctionTrigger refers to.

 functionPrototype : FunctionPrototype [0..1]

The FunctionPrototype that the FunctionTrigger refers to.

 mode : Mode [*]

The execution Modes in which the FunctionTrigger is active.

Constraints
[1] The port association must not be empty when triggerPolicy is EVENT.

[2] The port association is empty when triggerPolicy is TIME.

[3] Function and functionPrototype are mutually exclusive associations. A FunctionTrigger either
identifies a FunctionType or a FunctionPrototype as its target function, but not both.

[4] Only FunctionFlowPort of FlowDirection=in shall be referred to in the association port.

Semantics
Association Mode defines in which modes the trigger is active.

The FunctionBehavior referenced by the FunctionTrigger is invoked when the FunctionTrigger is
active. If multiple ports are referenced, this implies an AND semantics.

It is possible to have multiple triggers on a function, e.g., a slow period complemented with an
event trigger allows fast response when needed but a minimal execution rate.

9.2.5 Mode (from Behavior)

Generalizations

 EAElement (from Elements)

Description
Modes are a way to introduce various configurations in the system to account for different states of
the system, or of a hardware entity, or an application. The use of modes can be used to filter
different views of the model.

Modes are characterized by a Boolean condition provided as a String, which evaluates to true
when the Mode is active.

As far as behavior is concerned, Modes enable the logical organization of a set of triggers and
behaviors over a set of functions. Modes are referred to by both FunctionTriggers and
FunctionBehaviors (see FunctionTrigger and FunctionBehavior).

Modes can be further organized in mutually exclusive sets with ModeGroups (see that element).

Attributes

 condition : String [1]

A Boolean expression that characterizes the Mode, it evaluates to true when the Mode is
active. The syntax and grammar of this expression is unspecified.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Mode is active if and only if the condition is true.

file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

73 (244)

9.2.6 ModeGroup (from Behavior)

Generalizations

 TraceableSpecification (from Elements)

Description
ModeGroups serve as containers of Modes. The Modes in a ModeGroup are mutually exclusive.
This means that only one Mode of a ModeGroup is active at any point in time. A precondition in
the form of a Boolean expression is assigned to the ModeGroup so that ModeGroups can be
switched on and off as a whole.

Attributes

 precondition : String [1]

A Boolean expression that evaluates to true when the ModeGroup is active.

Associations

 mode : Mode [1..*] {composite}

The modes in this group.

Constraints
No additional constraints

Semantics
The ModeGroup defines a set of modes of which exactly one is active if precondition is true and
otherwise none is active.

9.2.7 TriggerPolicyKind (from Behavior) «enumeration»

Generalizations
None

Description
TriggerPolicyKind represents an enumeration for triggering policies.

Enumeration Literals

 EVENT

Triggering by event.

 TIME

Triggering by time.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The TriggerPolicyKind contains EVENT and TIME as possible triggering policies.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Mode

EAST-ADL Domain Model Specification version V2.1.12

74 (244)

Part IV Variability

This part covers variability extension to EAST-ADL.

EAST-ADL Domain Model Specification version V2.1.12

75 (244)

10 Variability

10.1 Overview

This package contains elements to express variability in the analysis architecture, design
architecture and implementation architecture. These abstraction levels in EAST-ADL will
sometimes be called the artifact levels.

Variability management in EAST-ADL is heavily based on feature modeling. However, since
feature modeling is used in EAST-ADL also for other purposes than variability management, the
feature modeling concepts were not defined in this extension but as part of the EAST-ADL core in
package FeatureModeling. For more details on this, please refer to packages FeatureModeling
and VehicleFeatureModeling.

Figure 12. Diagram depicting the organization of variability modeling elements.

EAST-ADL Domain Model Specification version V2.1.12

76 (244)

Figure 13. Diagram depicting the elements involved in artifact-level variation management.

Figure 14. Diagram depicting the elements for configuration modeling.

EAST-ADL Domain Model Specification version V2.1.12

77 (244)

10.2 Element Descriptions

10.2.1 ConfigurableContainer (from Variability)

Generalizations

 EAElement (from Elements)

Description
ConfigurableContainer is a marker class that marks an element identified by association
configurableElement as a configurable container of some variable content, i.e. VariableElements
and other, lower-level ConfigurableContainers. In order to describe the contained variability to the
outside world and to allow configuration of it, the ConfigurableContainer can have a public feature
model and an internal configuration decision model not visible from the outside, called "internal
binding".

In addition, the ConfigurableContainer can be used to extend the EAST-ADL variability approach
to other languages and standards by pointing from the ConfigurableContainer to the respective
(non EAST-ADL) element with association configurableElement. This provides the public feature
model and the ConfigurationDecisionModel to that non EAST-ADL element.

The variable content of a ConfigurableContainer is defined as all VariableElements and all other
ConfigurableContainers that are directly or indirectly contained in the Identifiable denoted by
association configurableElement. Instead of 'variable content' the term 'internal variability' may be
used.

Note that, according to this rule, the containment between a ConfigurableContainer and its
variable content, i.e. it's contained VariableElements and lower-level ConfigurableContainers, is
not directly defined between these meta-classes. Instead, the containment is defined by the
Identifiable pointed to by association configurableElement. For example, consider a FunctionType
"WiperSystem" containing two FunctionPrototypes "front" and "rear" both typed by FunctionType
"WiperMotor"; to make the wiper system configurable and the rear wiper motor optional, a
ConfigurableContainer is created that points to FunctionType "WiperSystem" (with association
configurableElement) and a VariableElement is created that points to FunctionPrototype "rear"
(with association optionalElement); the containment between the ConfigurableContainer and the
VariableElement is therefore not explicitly defined between these classes but instead only between
FunctionType "WiperSystem" and "FunctionPrototype" rear. In addition, the variability-related
visibility of "rear" can be changed with PrivateContent: by default the variability of "rear" will be
public and visible for direct configuration from the outside of its containing ConfigurableContainer,
i.e. "WiperSystem"; by defining a PrivateContent marker object pointing to the FunctionPrototype
"rear", this can be changed to private and this variability will not be visible from the outside of
"WiperSystem".

Attributes
No additional attributes

Associations

 publicFeatureModel : FeatureModel [0..1] {composite}

The local feature model of the ConfigurableContainer.

PublicFeatureModel represents internal variability of a ConfigurableContainer. Thus it can
be seen as being part of the public interface of a ConfigurableContainer.

 privateContent : PrivateContent [*] {composite}

 internalBinding : InternalBinding [0..1] {composite}

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23PrivateContent
file:///C:/Volvo/MAENAD/index.html%23InternalBinding

EAST-ADL Domain Model Specification version V2.1.12

78 (244)

The ConfigurationDecisionModel of the ConfigurableContainer.

 variationGroup : VariationGroup [*] {composite}

The variation groups that define certain dependencies and constraints between this
ConfigurableContainer's variable elements.

 configurableElement : Identifiable [1]

This association points to the actual element in the core model that is marked as a
configurable container of some variable content by this ConfigurableContainer. The
ConfigurableContainer in the variability extension can thus be seen as merely a marker
element (this marker mechanism follows the global guideline for relating the EAST-ADL
extensions to the core and is not specific to the variability extension).

Constraints
[1] Identifies one FunctionType or one HardwareComponentType.

[2] The publicFeatureModel is only allowed to contain Features (no VehicleFeatures).

Semantics
Marks the element identified by association configurableElement as a configurable container of
variable content (i.e. it contains VariableElements and/or other, lower-level
ConfigurableContainers) and optionally provides a public feature model and an internal
configuration decision model for it, thus providing configurability support for them.

10.2.2 ConfigurationDecision (from Variability)

Generalizations

 ConfigurationDecisionModelEntry (from Variability)

Description
ConfigurationDecision represents a single, atomized rule on how to configure the target feature
model(s) of the containing ConfigurationDecisionModel, depending on a given configuration of the
source feature model(s). Two examples are: "all North American (USA+Canada) cars except A-
Class have cruise control" (one ConfigurationDecision) or "all Canadian cars have adaptive cruise
control" (another ConfigurationDecision). All ConfigurationDecisions within a single
ConfigurationDecisionModel then specify how the target feature model(s) are to be configured
depending on the configuration of the source feature model(s).

Example:

Let's assume we have two FeatureModels: FM1 and FM2. FM1 has possible end-customer
decisions like USA, Canada, EU, Japan and A-Class, C-Class, etc. FM2 has another possible end-
customer decision such as CruiseControl, AdaptiveCruiseControl, RearWiper, RainSensor. End-
customer decisions in FM2 describe possible technical features of the delivered products. By way
of a set of ConfigurationDecisions it is now possible to define the configuration of FM2 (i.e. if there
is a RainSensor, etc.) dependent on a configuration of FM1. In other words, with a
ConfigurationDecision we can express something like: "If USA is selected in FM1 AND A-Class is
not selected in FM1, then CruiseControl will be selected in FM2".

The two most important constituents of a ConfigurationDecision are its 'criterion' and 'effect'. The
effect is a list of things to select and deselect in the target configuration(s), whereas the criterion
formulates a condition on the source configuration(s) under which this ConfigurationDecision's
effect will actually be applied to the target configuration(s). In the first example above, the criterion
would be "USA & not A-Class" and the effect would be "CruiseControl[+]".

Attributes

 criterion : String [0..1]

file:///C:/Volvo/MAENAD/index.html%23VariationGroup
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry

EAST-ADL Domain Model Specification version V2.1.12

79 (244)

The criterion is a logical expression on the source configuration(s) that states under which
condition the 'effect' will be applied to the target configuration(s). This attribute adheres to
the syntax and semantics of the VSL language.

Note that association "selectionCriterion" provides an alternative means for defining such
an expression in the form of an AUTOSAR mixed string expression. If both "criterion" and
"selectionCriterion" are defined, they are assumed to be semantically equivalent and a tool
may choose which one to use for variability and configuration management.

 effect : String [1]

States which Features are included/selected by the ConfigurationDecision in case the
logical expression in 'criterion' evaluates to true. Each of these Features needs to be
defined in one of the target feature models of the containing ConfigurationDecisionModel.
This attribute adheres to the syntax and semantics of the VSL language.

The Features are documented as a comma-separated list of strings. Each string has the
form <Name of FeatureModel>#<Name of Feature>. If a string is unique in all the source
and target FeatureModels of the ConfigurationDecisionModel containing this
ConfigurationDecision, then the first part (the FeatureModel name and the #-separator) can
be omitted. If a Feature name is not unique in a single FeatureModel, then a dot-notation
may be used to prepend the name(s) of predecessors in order to identify the Feature.

Configuring a cloned feature does not mean selecting or deselecting it but instead
instances of the cloned feature are created. Each such instance is provided with a name,
which thus becomes a part of the configuration (not the feature model). If several instances
are created for a single cloned feature, then the name is used to identify these instances.
For example, consider a cloned feature Wiper with cardinality [*]. A first configuration
decision might create an instance called "front" and a second might create another named
"rear"; a third configuration decision creating or otherwise referring to an instance called
"front" will denote the same instance as the first configuration decision. The name space
for these instance names is a particular feature configuration.

As an example for the syntax and semantics of the effect attribute, assume there are two
FeatureModels called FMa and FMb and they both contain the Features Wiper and
ClimateControl. In FMa (but not in FMb), Wiper and ClimateControl are both refined into
the child features Simple and Advanced. In addition, the wiper in FMa has a RainSensor.
To denote the RainSensor in FMa you can state:

FMa#Wiper.RainSensor

or simply write:

RainSensor

This is sufficient here, because the name of Feature RainSensor is unique within FMa and
within all FeatureModels referenced by the ConfigurationDecisionModel. In contrast, to
denote the advanced version of the climate control in FMa you can specify:

FMa#ClimateControl.Advanced

or simply:

ClimateControl.Advanced

but merely stating "Advanced" would not suffice because there are two features with that
name. Finally, to denote the wiper of feature model FMb you write:

FMb#Wiper

 isEquivalence : Boolean [1]

EAST-ADL Domain Model Specification version V2.1.12

80 (244)

Setting the attribute isEquivalence to true means that the features referred to in the
ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision (i.e.
no other ConfigurationDecision in the same ConfigurationDecisionModel may refer to these
features). This means that this ConfigurationDecision is the ONLY way in which these
features can be selected and therefore the usual logical implication that a
ConfigurationDecision represents is turned into a logical equivalence, hence the name: the
effect is applied to the target configurations if and only if the specified criterion holds.

When setting this attribute to true, the modeler can state that the target-side features in
this ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision,
i.e. no other ConfigurationDecision may influence these target-side features.

Associations

 selectionCriterion : SelectionCriterion [0..1] {composite}

The selectionCriterion is a logical expression on the source configuration(s) that states
under which condition the 'effect' will be applied to the target configuration(s). It is defined
as a mixed string expression.

Note that attribute “criterion” provides an alternative means for defining such an expression
in the form of a VSL expression. If both “criterion” and “selectionCriterion” are defined, they
are assumed to be semantically equivalent and a tool may choose which one to use for
variability and configuration management.

 target : Identifiable [*] {ordered}

The target elements used in the mixed string expression.

Constraints
[1] Attribute "criterion" or association "selectionCriterion" (or both) must be defined.

Semantics
The ConfigurationDecision excludes or includes Features based on a given criterion.

The elements of the criterion and effect attributes may be identified through the target and the
source in the selectionCriterion. The criterion and effect attributes can contain a VSL expression
with qualified names of the identified elements.

10.2.3 ConfigurationDecisionFolder (from Variability)

Generalizations

 ConfigurationDecisionModelEntry (from Variability)

Description
ConfigurationDecisionFolder represents a grouping for ConfigurationDecisions.

Attributes
No additional attributes

Associations

 childEntry : ConfigurationDecisionModelEntry [*] {composite}

The child entries of the ConfigurationDecisionFolder.

Constraints
No additional constraints

Semantics
ConfigurationDecisionFolder is a grouping entity for ConfigurationDecisions.

file:///C:/Volvo/MAENAD/index.html%23SelectionCriterion
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry

EAST-ADL Domain Model Specification version V2.1.12

81 (244)

10.2.4 ConfigurationDecisionModel (from Variability) {abstract}

Generalizations

 EAElement (from Elements)

Description
A ConfigurationDecisionModel defines how to configure m target feature models, depending on a
given configuration of n source feature models, thus establishing a configuration-related link from
the n source feature models to the m target feature models (also called configuration link). With
the information captured in a ConfigurationDecisionModel it is then possible to transform a given
set of source configurations (one for every source feature model) into corresponding target
configurations (one for every target feature model).

For example, a ConfigurationDecisionModel can capture information such as "if feature 'S-Class' is
selected in the source feature model, then select feature 'RainSensor' in the target feature model"
or "if feature 'USA' is selected in the source feature model, then select feature 'CupHolder' in the
target feature model".

Note that in principle all ConfigurationDecisionModels have source / target feature models.
However, they are only defined explicitly for those used on vehicle level; for
ConfigurationDecisionModels used as an internal binding on FunctionTypes, the source and target
feature models are defined implicitly (cf. metaclass InternalBinding). In addition, in the special
case of FeatureConfiguration there is by definition no source and only a single target feature
model, which is defined explicitly (cf. metaclass FeatureConfiguration).

The configuration information captured in a ConfigurationDecisionModel is represented by
ConfigurationDecisions, each of which captures a single, atomized rule on how to configure the
target feature model(s) depending on a given configuration of the source feature model(s).

Attributes
No additional attributes

Associations

 rootEntry : ConfigurationDecisionModelEntry [*] {composite}

The root entries of the ConfigurationDecisionModel.

Constraints
No additional constraints

Semantics
See description.

10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract}

Generalizations

 EAElement (from Elements)

Description
ConfigurationDecisionModelEntry is the abstract base class for all content of a
ConfigurationDecisionModel.

Attributes

 isActive : Boolean = true [1]

If active==TRUE then the ConfigurationDecisionModelEntry is actually applied when
transforming source into target configurations; otherwise it will be ignored. With this
attribute, configuration decisions can (temporarily) be disabled without having to delete
them from the model.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModelEntry
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

82 (244)

If this is set to FALSE for a ConfigurationDecisionFolder, then the entire contents of this
folder is deactivated, no matter to what value their isActive-attribute is set.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

10.2.6 ContainerConfiguration (from Variability)

Generalizations

 ConfigurationDecisionModel (from Variability)

Description
ContainerConfiguration defines an actual configuration of the variable content of a
ConfigurableContainer, in particular the selection or de-selection of contained VariableElements
and the configuration of the public feature models of other contained ConfigurableContainers. For
more details on the variable content of a ConfigurableContainer refer to the documentation of
meta-class ConfigurableContainer.

The ContainerConfiguration inherits from ConfigurationDecisionModel even though it does not
define a configuration link between feature models, similar to FeatureConfiguration. For more
information on this, refer to the documentation of meta-class FeatureConfiguration.

The source and target feature models of a ContainerConfiguration are defined implicitly: it always
has zero source feature models (as explained for FeatureConfiguration) and its target feature
models can be deduced from the ConfigurableContainer being configured by applying the same
rules as defined for InternalBinding.

Attributes
No additional attributes

Associations

 configuredContainer : ConfigurableContainer [1]

The ConfiguredContainer being configured by this ContainerConfiguration.

Constraints
No additional constraints

Semantics
The ContainerConfiguration specifies a concrete configuration of the variable content of a
ConfigurableContainer.

10.2.7 FeatureConfiguration (from Variability)

Generalizations

 ConfigurationDecisionModel (from Variability)

Description
FeatureConfiguration defines an actual configuration of a FeatureModel, in particular the selection
or de-selection of optional features, values for selected parameterized features, and instance
creations for cloned features.

file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel
file:///C:/Volvo/MAENAD/index.html%23ConfigurableContainer
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel

EAST-ADL Domain Model Specification version V2.1.12

83 (244)

Note that configurations of feature models are realized as a specialization of metaclass
ConfigurationDecisionModel. This is possible because a ConfigurationDecisionModel also
captures the configuration, i.e., of its target feature model(s); while in the standard case of
ConfigurationDecisionModel this target-side configuration depends on a given configuration of
source feature model(s), here we simply define a "constant" target-side configuration without
considering any source configurations. Therefore, the FeatureConfiguration meta-class has
additional constraints compared to the super-class ConfigurationDecisionModel: the
FeatureConfiguration has no source FeatureModel and only a single target FeatureModel, which
serves as the FeatureModel being configured, explicitly defined through association
'configuredFeatureModel'. And since there is no source feature model to which the criterion can
refer, all ConfigurationDecisions in a FeatureConfiguration must have "true" as their criterion.

Attributes
No additional attributes

Associations

 configuredFeatureModel : FeatureModel [1]

Constraints
No additional constraints

Semantics
The FeatureConfiguration specifies a concrete configuration of a feature model, in particular which
Features of this FeatureModel are selected or deselected.

10.2.8 InternalBinding (from Variability)

Generalizations

 ConfigurationDecisionModel (from Variability)

Description
The InternalBinding is the private, internal ConfigurationDecisionModel of the
ConfigurableContainer. It defines how the internal, lower-level variability of the
ConfigurableContainer is bound, i.e. configured, depending on a given configuration of the
ConfigurableContainer's public feature model. This way, the binding of this internal variability is
encapsulated and hidden behind the public feature model, which serves as a variability-related
interface.

Note that for this use case, the source and target feature models need not be defined explicitly
because they are deduced implicitly: the ConfigurableContainer's public feature model serves as
the (single) target feature model, and the source feature models are deduced from the
ConfigurableContainer's internal variability (esp. other, lower-level ConfigurableContainers which
are contained).

For a definition of the precise meaning of 'internal variability' (also called variable content) refer to
the documentation of meta-class ConfigurableContainer.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
See description.

file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel

EAST-ADL Domain Model Specification version V2.1.12

84 (244)

10.2.9 PrivateContent (from Variability)

Generalizations

 EAElement (from Elements)

Description
PrivateContent is a marker class that marks the artifact element denoted by association
privateElement as private, i.e., it will not be presented to the outside of the containing
ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and PrivateContent work together.

Attributes
No additional attributes

Associations

 privateElement : Identifiable [1]

This association points to the actual element in the core model that is marked private by
this PrivateContent object. Instances of the PrivateContent meta-class in the variability
extension can thus be seen as merely a marker object (this marker mechanism follows the
global guideline for relating the EAST-ADL extensions to the core and is not specific to the
variability extension).

Constraints
[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePort or one ClampConnector.

Semantics
Marks the element identified by association privateElement as private. Otherwise the elements
visibility defaults to public.

10.2.10 ReuseMetaInformation (from Variability)

Generalizations

 TraceableSpecification (from Elements)

Description
ReuseMetaInformation represents the description information needed in the context of reuse. For
example a specific entity is only a short-time solution that is not intended to be reused. Also a
specific entity can only be reused for specific model ranges (that are not reflected in the product
model).

Attributes

 information : String [1]

The reuse information is stored in this attribute.

 isReusable : Boolean = true [1]

This Boolean attributes just says whether the owning VariableElement itself can essentially
be reused or not. Specific information or constraints on reuse are in the information
attribute.

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

85 (244)

Semantics
The ReuseMetaInformation represents information that explains if and how the respective entity
can be reused.

10.2.11 SelectionCriterion (from Variability)

Generalizations

 EAExpression (from Values)

Description
A mixed string description, identifying the source elements. This means that the SelectionCriterion
could evaluate to True or False if a optional identifiable (feature or artifact) is referenced as target.
Or evaluate to a numerical if a FeatureParameter is referenced as target.

Attributes
No additional attributes

Associations

 source : Identifiable [*] {ordered}

The elements used in the mixed string expression.

Constraints
No additional constraints

Semantics
See description.

10.2.12 Variability (from Variability)

Generalizations

 Context (from Elements)

Description
The collection of variability descriptions, related feature models, and decision models. This
collection can be done across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

 productFeatureModel : FeatureModel [*] {composite}

This association points to zero or more feature models intended to be used on the vehicle
level in addition to the core technical feature model (cf. association technicalFeatureModel
in meta-class VehicleLevel).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on the vehicle level, which provide an orthogonal view on the core
technical feature model tailored to a particular purpose, for example an end-customer
feature model. However, there may be more and other use cases for feature models on
vehicle level. More detailed treatment of this is beyond the scope of the language
specification and can be found in the accompanying usage and methodology
documentations.

 decisionModel : VehicleLevelBinding [*] {composite}

 configuration : FeatureConfiguration [*] {composite}

 variableElement : VariableElement [*] {composite}

file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23VehicleLevelBinding
file:///C:/Volvo/MAENAD/index.html%23FeatureConfiguration
file:///C:/Volvo/MAENAD/index.html%23VariableElement

EAST-ADL Domain Model Specification version V2.1.12

86 (244)

 configurableContainer : ConfigurableContainer [*] {composite}

Constraints
No additional constraints

Semantics
See description.

10.2.13 VariableElement (from Variability)

Generalizations

 EAElement (from Elements)

Description
VariableElement is a marker class that marks an artifact element denoted by association
optionalElement as being optional, i.e. it will not be present in all configurations of the complete
system. A typical example is an optional FunctionPrototype.

In addition, the VariableElement can be used to extend the EAST-ADL variability approach to
other languages and standards by pointing from the VariableElement to the respective (non EAST-
ADL) element with association optionalElement, thus marking the non EAST-ADL element as
optional and providing configuration support within its containing ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and VariableElement work together.

Attributes
No additional attributes

Associations

 actualBindingTime : BindingTime [1] {composite}

Actual binding time attribute. Due to technical conditions it may occur that the realized
binding time of the feature/variation point differs from the originally intended binding time.
In this case one has to provide information about the actual binding time. In the rationales it
must be described what the reasons are for a (different) actual binding time.

 requiredBindingTime : BindingTime [0..1] {composite}

Required binding time attribute. Each feature/variation point must have a required binding
time attribute. The required binding time describes the binding time that the feature is
intended to have.

 reuseMetaInformation : ReuseMetaInformation [0..1] {composite}

Reuse-relevant meta-information for the element.

 optionalElement : Identifiable [1..*]

This association points to the actual element in the core model that is marked optional by
this VariableElement. The VariableElement in the variability extension can thus be seen as
merely a marker element (this marker mechanism follows the global guideline for relating
EAST-ADL extensions to the core and is not specific to the variability extension).

Constraints
[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePin or one ClampConnector.

Semantics
Marks the element identified by association optionalElement as optional.

file:///C:/Volvo/MAENAD/index.html%23ConfigurableContainer
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23BindingTime
file:///C:/Volvo/MAENAD/index.html%23ReuseMetaInformation
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

87 (244)

10.2.14 VariationGroup (from Variability)

Generalizations

 EAElement (from Elements)

Description
A VariationGroup defines a relation between an arbitrary number of VariableElements. It is
primarily intended for defining how these VariableElements may be combined (e.g. one requires
the other, alternative, etc.).

Attributes

 constraint : String [1]

Only defined iff kind=="custom". A constraint specifying how the VariableElements in the
variation group can be combined. This attribute adheres to the syntax and semantics of the
VSL language.

 kind : VariabilityDependencyKind [1]

The kind of the variation group (see enumeration VariationGroupKind).

Associations

 variableElement : VariableElement [1..*] {ordered}

Associated variable elements.

Constraints
No additional constraints

Semantics
Defines a dependency or constraint between the variable elements denoted by association
variableElement. The actual constraint is specified by attribute kind.

10.2.15 VehicleLevelBinding (from Variability)

Generalizations

 ConfigurationDecisionModel (from Variability)

Description
This class represents a binding on the vehicle level or coming from the vehicle level with explicitly
defined source and target feature models. The source feature models must be on vehicle level, but
the target feature models may be located on artifact level, e.g. the public feature model of the top-
level FunctionType in the FDA. This way, a VehicleLevelBinding may be used to bridge the gap
from vehicle level variability management to that on the artifact level.

Source feature models may be either the core technical feature model (as defined by association
technicalFeatureModel of meta-class VehicleLevel) or one of the optional product feature models
(as defined by association productFeatureModel of meta-class Variability in the variability
extension).

Attributes
No additional attributes

Associations

 sourceVehicleFeatureModel : FeatureModel [*] {ordered}

 targetFeatureModel : FeatureModel [*] {ordered}

Constraints
[1] The sourceVehicleFeatureModels shall only contain VehicleFeatures.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23VariableElement
file:///C:/Volvo/MAENAD/index.html%23ConfigurationDecisionModel
file:///C:/Volvo/MAENAD/index.html%23FeatureModel
file:///C:/Volvo/MAENAD/index.html%23FeatureModel

EAST-ADL Domain Model Specification version V2.1.12

88 (244)

[2] The sourceVehicleFeatureModels shall be different from the targetFeatureModels.

Semantics
See description.

EAST-ADL Domain Model Specification version V2.1.12

89 (244)

Part V Requirements

This part covers the Requirements extension to EAST-ADL, which includes requirements, use
cases and Verification and Validation.

EAST-ADL Domain Model Specification version V2.1.12

90 (244)

11 Requirements

11.1 Overview

A requirement expresses a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification or other formally imposed
properties.

Requirements can be introduced in different phases of the development process for different
reasons. They could be introduced by marketing people, control engineers, system engineers,
software engineers, Driver/OS developers, basic software developers or hardware engineers. This
leads to the fact that requirements have many sources, and requirements are of many types (at
different levels of detail) and have several relations between them. Under these conditions the
number of requirements can become quickly unmanageable if appropriate management does not
exist. Note that, requirements can change during the project development and the changes should
be taken into account. Requirements are organized hierarchically through several kinds of
refinement relations.

EAST-ADL has constructs that deal with these problems. Some of these constructs deals with
general issues in software development and have been already addressed in the past by general
processes. As done for the structure part of EAST-ADL, the requirements part will be compliant
with UML2. The EAST-ADL adapts existing concepts whenever possible and develops new ones
otherwise.

Elements inspired by SysML are Requirement, Satisfy, Refine, DeriveRequirement, and Verify.

Figure 15. Diagram for Requirements overview.

EAST-ADL Domain Model Specification version V2.1.12

91 (244)

Figure 16. Diagram for Relationships including Requirement.

Figure 17. Diagram for Requirements organization.

11.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

92 (244)

11.2.1 DeriveRequirement (from Requirements)

Generalizations

 RequirementsRelationship (from Requirements)

Description
The DeriveRequirement is a relationship metaclass, which signifies a dependency relationship
between two sets of Requirements, showing the relationship when a set of derived client
Requirement (client requirement) is derived from a set of Requirements (supplier requirement).

Attributes
No additional attributes

Associations

 derivedFrom : Requirement [1..*]

The set of requirements that the client requirement are derived from.

 derived : Requirement [1..*]

The set of requirements that are derived from the supplier requirement.

Constraints
No additional constraints

Semantics
The DeriveRequirement metaclass signifies a derived/derived by relationship between
Requirements, where the modification of the supplier Requirement may impact the derived client
Requirement.

11.2.2 OperationalSituation (from Requirements)

Generalizations

 TraceableSpecification (from Elements)

Description
An operational situation is a state, condition or scenario in the environment that may influence the
vehicle. The Operational Situation may be further detailed by a functional definition in the
EnvironmentModel.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
OperationalSituation represents a state, condition or scenario that is external to the vehicle.

11.2.3 QualityRequirement (from Requirements)

Generalizations

 Requirement (from Requirements)

Description
QualityRequirements or non-functional requirements are used to introduce externally visible
properties of the system considered as a whole. They specify criteria that can be used to judge the

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

93 (244)

operation of a system. As opposed to a functional requirement specifying what a system is
supposed to do, the non-functional requirements define how a system is supposed to be.

The attribute qualityRequirementType allows a more specific classification.

Attributes

 kind : QualityRequirementKind [1]

Associations
No additional associations

Constraints
No additional constraints

Semantics
A QualityRequirement element represents a requirement which is non-functional.

11.2.4 QualityRequirementKind (from Requirements) «enumeration»

Generalizations
None

Description
QualityRequirementKind represents an enumeration with enumeration literals describing various
types of quality requirements.

Enumeration Literals

 availability

The requirement is related to availability, the readiness for correct service.

 confidentiality

The requirement is related to confidentiality.

 configurability

The requirement is related to the ability to configure the functionality.

 ergonomy

The requirement is related to the ergonomy of the functionality.

 humanMachineInterface

The requirement is related to the human-machine interface.

 integrity

The requirement is related to integrity, absence of improper system alteration.

 maintainability

The requirement is related to maintainability, the ability to undergo modifications and
repairs.

 other

The requirement is a quality requirement with a general classification.

 performance

The requirement is related to performance in general.

 reliability

The requirement is related to reliability, the continuity of correct service.

EAST-ADL Domain Model Specification version V2.1.12

94 (244)

 safety

The requirement is related to safety, the absence of catastrophic consequences on the
user(s) and the environment.

 security

The requirement is related to security.

 timing

The requirement is related to timing.

Associations
No additional associations

Constraints
No additional constraints

Semantics
QualityRequirementKind represents the kind of QualityRequirement given by the definition of the
respective Enumeration Literal.

11.2.5 Refine (from Requirements)

Generalizations

 RequirementsRelationship (from Requirements)

Description
The Refine is a relationship metaclass, which signifies a dependency relationship between
Requirements and EAElements, showing the relationship when a client EAElement refines the
supplier Requirement.

Attributes
No additional attributes

Associations

 refinedRequirement : Requirement [1..*]

List of refined Requirements.

Dependencies

 refinedBy : EAElement [1..*]

«instanceRef»

Constraints
[1] The property refinedBy must not have the types Requirement or RequirementContainer.

Semantics
The Refine metaclass signifies a refined requirement/refined by relationship between a
Requirement and an EAElement, where the modification of the supplier Requirement may impact
the refining client EAElement. The Refine metaclass implies the semantics that the refining client
EAElement is not complete, without the supplier Requirement.

11.2.6 Requirement (from Requirements)

Generalizations

 TraceableSpecification (from Elements)

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

95 (244)

Description
The Requirement represents a capability or condition that must (or should) be satisfied. A
Requirement can also specify an informal constraint, e.g. "The development of the component X
must be according to the standard Y", or "The realization of this function as a software component
must adhere to the scope and external interface as specified by this function". It will be used to
unite the common properties of specific requirement types. A Requirement may either be directly
associated with a Context (by inheriting from TraceableSpecification) or it may be included in a
RequirementsHierarchy, which represents a larger unit or module of specification information.

The traceability between Requirement entities and other specification or design entities will be
ensured by the relationship dependencies described in the Infrastructure part of this specification.

Attributes

 formalism : String [0..1]

Specifies the language used for the requirement statement.

 url : String [0..1]

Reference to possible external file containing the requirement statement.

Associations

 mode : Mode [*]

The mode where this requirement is valid.

Constraints
No additional constraints

Semantics
The string in the text attribute inherited from TraceableSpecification is the capability or condition
that applies to the Identifiable that is associated to the Requirement through the Satisfy relation.

11.2.7 RequirementsHierarchy (from Requirements)

Generalizations

 TraceableSpecification (from Elements)

Description
RequirementsHierarchy represents a larger unit or module of specification information. It is used to
bundle several Requirements which are semantically related to each other. Thus, to preserve the
ordering of requirement specification objects, the order of child hierarchies is very important here.

The RequirementsHierarchy with its reference to Requirement is the basic element for structuring
requirement information into a forest structure.

RequirementsHierarchy correponds to ReqIF SpecHierarchy.

Attributes
No additional attributes

Associations

 containedRequirement : Requirement [0..1]

Requirement referenced by the virtual RequirementsHierarchy.

 childHierarchy : RequirementsHierarchy [*] {ordered} {composite}

Sub hierarchies of a requirements hierarchy. Sub hierarchies may have references (each
time max. one) to requirement specification objects. To preserve the original ordering of
requirement specification objects, the ordering of sub hierarchies is very important here.

file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy

EAST-ADL Domain Model Specification version V2.1.12

96 (244)

Constraints
[1] Only non-root RequirementsHierarchy which is contained in another RequirementHierarchy are
allowed to reference a Requirement.

Semantics
RequirementsHierarchy organizes Requirements in groups. The semantics of the group is user-
defined.

11.2.8 RequirementsLink (from Requirements)

Generalizations

 RequirementsRelationship (from Requirements)

Description
RequirementsLink represents a relation between two or more Requirements. Source and target
Requirements of the relation are distinguished, which means that the relation is directed (from
source to target). If such a distinction does not make sense, then use a
RequirementsRelationGroup instead.

The standard case will be a relation with one source and one target Requirement. However, it is
possible to have several source and/or several target Requirements so that general relations can
be expressed with instances of this metaclass.

The semantic of a concrete Requirement relation can be provided by the modeler. In particular,
three ways are conceivable:

(1) The user attributes of the relation can be used to specify its meaning, for example with a user
attribute called "relationType" which is set to values such as "needs" or "excludes".

(2) The UserAttributeElementType can be used. Certain types will be used for certain relation
semantics.

(3) RequirementsRelationGroups can be used, i.e. all relations with an "excludes" meaning are put
in one relation group and all with a "needs" meaning are put in another.

Attributes

 isBidirectional : Boolean [1]

When set to true, the semantic relation represented by this instance of
RequirementRelation does not only apply to the direction from source to target (as always)
but also in the opposite direction.

Note that this means that the relation becomes directed in both directions but NOT
undirected. To express an undirected association use a RequirementsRelationGroup.

Associations

 target : Requirement [1..*]

The requirement(s) at which this relation ends.

 source : Requirement [1..*]

The requirement(s) at which this relation starts.

Constraints
No additional constraints

Semantics
The RequirementsLink defines a relation from a set of source and target requirements. The
isBidirectional attribute defines whether the relation is bidirectional. The semantics of the relation is
user-defined.

file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

97 (244)

11.2.9 RequirementsModel (from Requirements)

Generalizations

 Context (from Elements)

Description
The collection of requirements, their relationships, and use cases. This collection can be done
across the EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

 requirementsRelationshipGroup : RequirementsRelationshipGroup [*] {composite}

 requirement : Requirement [*] {composite}

 requirementsHierarchy : RequirementsHierarchy [*] {ordered} {composite}

Root elements of requirement hierarchies.

 operationalSituation : OperationalSituation [*] {composite}

 requirementType : UserElementType [*] {composite}

User element types contained in this RequirementModel. This allows for the introduction of
additional user element types to be used within this RequirementsModel only. These are
additional in that they are used in addition to the user attribute definitions which are
provided globally for the entire EAST-ADL repository.

These user element types given by this association correspond to ReqIF's SpecType.

 useCase : UseCase [*] {composite}

Constraints
[1] The validFor attribute of the UserElementType shall be "Requirement".

Semantics
The RequirementsModel is a container element for requirement-related elements.

11.2.10 RequirementsRelationship (from Requirements) {abstract}

Generalizations

 Relationship (from Elements)

Description
Semantics:

RequirementsRelationship is an abstract association. The semantics is defined by its
specializations.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
RequirementsRelationship is an abstract association. The semantics is defined by its
specializations.

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationshipGroup
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy
file:///C:/Volvo/MAENAD/index.html%23OperationalSituation
file:///C:/Volvo/MAENAD/index.html%23UserElementType
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23Relationship

EAST-ADL Domain Model Specification version V2.1.12

98 (244)

11.2.11 RequirementsRelationshipGroup (from Requirements)

Generalizations

 TraceableSpecification (from Elements)

Description
RequirementsRelationGroup represents a group of relations between Requirements.

RequirementsRelationGroup corresponds to ReqIF RelationGroup.

Attributes
No additional attributes

Associations

 requirementsRelationship : RequirementsRelationship [1..*]

The relations that are grouped by this relation group. Note that this is not a containment
association, i.e., a single relation may be grouped by several RequirementRelationGroups.

Constraints
No additional constraints

Semantics
RequirementsRelationGroup represents a group of RequirementsRelations. The semantics of this
grouping is defined by the user.

11.2.12 Satisfy (from Requirements)

Generalizations

 RequirementsRelationship (from Requirements)

Description
The Satisfy is a relationship metaclass, which signifies the relationship between a Requirement
and an element intended to satisfy the Requirement.

Attributes
No additional attributes

Associations

 satisfiedRequirement : Requirement [*]

List of Requirements that are satisfied by the client ADLElement or satisfied by the client
AUTOSAR element.

 satisfiedUseCase : UseCase [*]

List of satisfied UseCases that are satisfied by the client EAElements or satisfied by the
client AUTOSAR elements.

Dependencies

 satisfiedBy : Identifiable [1..*]

«instanceRef»

Constraints
[1] The EAElement in the association satisfiedBy may not be a Requirement or
RequirementContainer.

[2] An element of type Satisfy is only allowed to have associations to either elements of type
UseCase (see satisfiedUseCase) or elements of type Requirement (see satisfiedRequirement).
Not both at the same time!

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

99 (244)

Semantics
The Satisfy metaclass signifies a satisfied requirement/satisfied by relationship between a set of
Requirements and a set of satisfying entities, where the modification of the supplier Requirements
may impact the satisfying client entities. The Satisfy metaclass implies the semantics that the
satisfying client entities are not complete without the supplier Requirement.

EAST-ADL Domain Model Specification version V2.1.12

100 (244)

12 UseCases

12.1 Overview

The use case package contains elements for defining the required usage of a system. Typically,
UseCases are used to capture the functional requirements of a system, that is, what a system is
supposed to do. In order to organize use cases in an EAST-ADL requirements hierarchy, a Refine
relation can be used to link the UseCase to a requirement.

To enable a rich and logical organization of UseCases, specific relationships are introduced to
enable the extension, inclusion or redefinition of existing UseCases.

The UseCase concept is explicitly linked to two main elements in the rest of the language: 1) the
Satisfy relationship from Requirements, which links system entities, and the Requirement or the
UseCase they satisfy; 2) the HazardousEvent concept from Dependability, which links a particular
Hazard to a specific situation, depicted as a UseCase.

Figure 18. Diagram for UseCase.

12.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

101 (244)

12.2.1 Actor (from UseCases)

Generalizations

 TraceableSpecification (from Elements)

Description
Actor represents a type of role played by an entity that interacts with the UseCase, e.g. by
exchanging signals and data, but which is external to the subject, i.e., in the sense that an
instance of an Actor is not a part of the instance of its corresponding subject. Actors may
represent roles played by human users, external hardware, or other subjects. Note that an Actor
does not necessarily represent a specific physical entity but merely a particular facet (i.e., "role") of
some entity that is relevant to the specification of its associated UseCases. Thus, a single physical
instance may play the role of several different Actors and, conversely, a given Actor may be
played by multiple different instances. Since an Actor is external to the subject, it is typically
defined in the same classifier or package that incorporates the subject classifier.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Actor element represents entities that interacts with a UseCase.

12.2.2 Extend (from UseCases)

Generalizations

 Relationship (from Elements)

Description
Extend represents the specification that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase. The extension takes place at one or more
specific ExtensionPoints defined in the extended UseCase. Note, however, that the extended
UseCase is defined independently of the extending UseCase and is meaningful independently of
the extending UseCase. On the other hand, the extending UseCase typically defines behavior that
may not necessarily be meaningful by itself. Instead, the extending UseCase defines a set of
modular behavior increments that augment an execution of the extended UseCase under specific
conditions. Note that the same extending UseCase can extend more than one UseCases.
Furthermore, an extending UseCase may itself be extended.

Attributes
No additional attributes

Associations

 extensionLocation : ExtensionPoint [1..*]

Identifies a point where the behavior of a UseCase can be augmented with elements of
another (extending) UseCase.

 extendedCase : UseCase [1]

The UseCase that is extended.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23ExtensionPoint
file:///C:/Volvo/MAENAD/index.html%23UseCase

EAST-ADL Domain Model Specification version V2.1.12

102 (244)

Semantics
An Extension relation identifies an extension UseCase which extends an extendedCase UseCase.

12.2.3 ExtensionPoint (from UseCases)

Generalizations

 RedefinableElement (from UseCases)

Description
ExtensionPoint represents a feature of a UseCase that identifies a point where the behavior of a
UseCase can be augmented with elements of another (extending) UseCase.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
ExtensionPoint identifies the point where the useCase UseCase ca be extended.

12.2.4 Include (from UseCases)

Generalizations

 Relationship (from Elements)

Description
Include is a specialization of the Relationship and represents a relationship between two
UseCases, implying that the behavior of the included UseCase is inserted into the behavior of the
including UseCase. The including UseCase may only depend on the result (value) of the included
UseCase. This value is obtained as a result of the execution of the included UseCase. Note that
the included UseCase is not optional and is always required for the including UseCase to execute
correctly.

Attributes
No additional attributes

Associations

 addition : UseCase [1]

UseCase providing behavior to include.

Constraints
No additional constraints

Semantics
The Include relationship identifies an addition UseCase, which is inserted in the including
UseCase.

12.2.5 RedefinableElement (from UseCases) {abstract}

Generalizations

 EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23RedefinableElement
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

103 (244)

Description
RedefinableElement represents an element that, when defined in the context of a classifier, can be
redefined more specifically or differently in the context of another classifier that specializes
(directly or indirectly) the context classifier

A redefinable element is a named element that can be redefined in the context of a generalization.

The RedefinableElement is an abstract metaclass.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
RedefinableElementrepresents an element that can be redefined in the context of another
classifier. Semantics is given by its specializations.

12.2.6 UseCase (from UseCases)

Generalizations

 TraceableSpecification (from Elements)

Description
A UseCase specifies a usage of a system. Typically, they are used to capture the functionality of a
system, that is, what a system is supposed to do.

Attributes
No additional attributes

Associations

 extensionPoint : ExtensionPoint [*] {composite}

An ExtensionPoint identifies a point where the behavior of a UseCase can be augmented
with elements of another (extending) UseCase.

 include : Include [*] {composite}

Include is a Relationship between two UseCases; the behavior of the included UseCase is
inserted into the behavior of the including UseCase.

 extend : Extend [*] {composite}

This Relationship specifies that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase.

Constraints
No additional constraints

Semantics
A UseCase identifies a usage of its corresponding system. ExtensionPoint identifies where the use
case can be extended with extend UseCases and include identifies UseCases inserted in the
including UseCase.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23ExtensionPoint
file:///C:/Volvo/MAENAD/index.html%23Include
file:///C:/Volvo/MAENAD/index.html%23Extend

EAST-ADL Domain Model Specification version V2.1.12

104 (244)

13 VerificationValidation

13.1 Overview

Many different verification and validation (V&V) techniques, methods, and tools are applied during
the development of electrical/electronic systems. Different techniques are applicable at different
abstraction levels. Also, choosing a technique depends on the properties being validated and/or
verified. Furthermore, each partner in a project may develop and employ his own V&V processes
and activities. Hence it is impossible for EAST-ADL to model all the objects that can be required by
all the possible V&V techniques. As a consequence, EAST-ADL provides the means for planning,
organizing and describing V&V activities on a fairly abstract level, and defines the links between
those V&V activities, the satisfied and verified requirements, and the objects modeling the system
(Functional Analysis Architecture, Functional components, Logical Tasks, etc.). EAST-ADL
describes the common parts of all V&V techniques, including: the results expected from the V&V
activities, the actual results which were obtained when applying the V&V techniques, and how the
V&V activities are constrained. Information that is specific to an individual V&V technique is not
described in EAST-ADL, but a place for storing this information is provided.

Individual V&V techniques may be used once or at several stages during an overall V&V effort.
Some of them are specific to one modeling design stage; others can be applied at various design
stages.

A set of V&V techniques and activities is necessary in order to completely verify and validate a
given system. Often these techniques and activities are employed and performed by many
different teams and departments, even by different companies. This situation demands the
planning and organization of all V&V related information.

A very important aspect of V&V support in EAST-ADL is the distinction between abstract and
concrete V&V information:

(1) At an abstract level, verification and validation information is defined without referring to a
concrete testing environment and without specifying stimuli or the expected outcome of a
particular VVProcedure on a detailed technical level.

(2) On the concrete level, verification and validation information specifies a concrete testing
environment and provides all necessary details for testing, e.g. stimuli and expected outcomes, on
a concrete technical level applicable to that testing environment.

Using a "what vs. how" definition of requirements one could say: the abstract level defines what
needs to be done to verify and validate a certain system, but not precisely how this is done.
Conversely, the concrete level defines the precise technical details of particular testing
environments. The abstract VVCases and VVProcedures for a particular system form a "to-do"-list,
which describes what needs to be done when actually testing the system with a concrete testing
environment, but in a form applicable to all conceivable testing environments.

EAST-ADL Domain Model Specification version V2.1.12

105 (244)

Figure 19. Diagram for Verification & Validation.

Figure 20. Diagram for Verification and Validation Organization.

EAST-ADL Domain Model Specification version V2.1.12

106 (244)

13.2 Element Descriptions

13.2.1 VerificationValidation (from VerificationValidation)

Generalizations

 Context (from Elements)

Description
The collection of verification and validation elements. This collection can be used across the
EAST-ADL abstraction levels.

Attributes
No additional attributes

Associations

 vvTarget : VVTarget [*] {composite}

 vvCase : VVCase [*] {composite}

The elements that are being verified and validated by this VVCase.

Usually this will be a subset of those elements which are realized by the VVTarget(s) of the
VVCase; but this need not always be the case.

The difference between the vvSubjects and the entities which are realized by the case's
VVTarget(s), is that the vvSubjects are related to the primary, overall objective of the
ConcreteVVCase, while the realized entities can comprise more than these. For example:

(a) For technical reasons additional entities need to be realized only to permit the testing of
the entities of actual interest or

(b) If a VVTarget is reused among many ConcreteVVCases and therefore realizes more
entities than are actually being tested by any single ConcreteVVCase.

 verify : Verify [*] {composite}

Constraints
No additional constraints

Semantics
VerificationValidation is a container element for a set of related vvTarget and vvCase elements
and verify relationships.

13.2.2 Verify (from VerificationValidation)

Generalizations

 RequirementsRelationship (from Requirements)

Description
Verify is a relationship metaclass, which signifies a dependency relationship between a
Requirement and a VVCase. It shows the relationship when a client VVCase and an optional
abstract VVProcedure verifies the supplier Requirement.

Attributes
No additional attributes

Associations

 verifiedRequirement : Requirement [1..*]

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23VVTarget
file:///C:/Volvo/MAENAD/index.html%23VVCase
file:///C:/Volvo/MAENAD/index.html%23Verify
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

107 (244)

The set of Requirements which the client VVCase verify.

 verifiedByProcedure : VVProcedure [*]

The abstract VVProcedures used to verify the Requirement.

 verifiedByCase : VVCase [1..*]

The VVCase that verifies the supplier Requirement

Constraints
No additional constraints

Semantics
The Verify metaclass signifies a refined requirement/verified by relationship between a
Requirement and a VVCase, where the modification of the supplier Requirement may impact the
verifying client VVCase and optional abstract VVProcedure. The Verify metaclass implies that the
semantics of the verifying client VVCase is not complete, without the supplier Requirement.

13.2.3 VVActualOutcome (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVActualOutcome represents the actual output of the testing environment as represented by
VVTarget when triggered by the VVStimuli of the concrete VVProcedure. This is defined by the
association 'performedVVProcedure' of the containing VVLog. It should be equivalent to the
VVIntendedOutcome defined by the association 'intendedOutcome'.

Attributes
No additional attributes

Associations

 intendedOutcome : VVIntendedOutcome [0..1]

Denotes the VVIntendedOutcome that this actual outcome must match.

Constraints
No additional constraints

Semantics
VVActualOutcome represents the actual output of a verification effort as defined by the V&V
elements.

13.2.4 VVCase (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVCase represents a V&V effort, i.e. it specifies concrete test subjects and targets and provides
stimuli and the expected outcome on a concrete technical level.

Attributes
No additional attributes

Associations

 vvProcedure : VVProcedure [*] {ordered} {composite}

The VVProcedures for this VVCase.

file:///C:/Volvo/MAENAD/index.html%23VVProcedure
file:///C:/Volvo/MAENAD/index.html%23VVCase
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23VVIntendedOutcome
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23VVProcedure

EAST-ADL Domain Model Specification version V2.1.12

108 (244)

 vvTarget : VVTarget [*]

The VVTargets for this VVCase. See dependency vvSubject for more information.

 vvLog : VVLog [*] {composite}

The VVLogs captured while executing this ConcreteVVCase.

 abstractVVCase : VVCase [0..1]

An abstract VVCase describes "what" needs to be done and is identified from a concrete
VVCase.

Dependencies

 vvSubject : Identifiable [*]

«instanceRef»

Constraints
[1] Only a concrete VVCase can have vvLog.

[2] Only a concrete VVCase can have vvTarget.

[3] Only a concrete VVCase can have an abstractVVCase.

Semantics
VVCase is a grouping element for a set of VVProcedures that together makes up a concrete
Verification/Validation effort.

13.2.5 VVIntendedOutcome (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVIntendedOutcome represents the expected output of the testing environment represented by
VVTarget when triggered by the corresponding VVStimuli of the containing concrete VVProcedure.

Since this entity only occurs on the concrete level (i.e. within the context of a concrete VVCase),
the output must be provided in a form that can be directly compared to the output of the
VVTarget(s) defined for the containing concrete VVCase.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
VVIntendedOutcome represents the expected output of a Verification/Validation effort.

13.2.6 VVLog (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
Concrete VVCase represents the precise description of a V&V effort on a concrete technical level
and thus provides all necessary information to actually perform this V&V effort.

file:///C:/Volvo/MAENAD/index.html%23VVTarget
file:///C:/Volvo/MAENAD/index.html%23VVLog
file:///C:/Volvo/MAENAD/index.html%23VVCase
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

109 (244)

However, it does not represent the actual execution of the effort.

This is the purpose of the VVLog. Each VVLog metaclass represents an execution of a concrete
VVCase.

For example, if the HIL test of the wiper system with a certain set of stimuli was performed on
Friday afternoon and, for checkup, again on Monday, then there will be one ConcreteVVCase
describing the HIL test and two VVLogs describing the test results from Friday and Monday
respectively.

Attributes

 date : String [1]

Date and time when this log was captured.

Associations

 performedVVProcedure : VVProcedure [1]

Associated procedure.

 vvActualOutcome : VVActualOutcome [*] {composite}

Set of outcome results.

Constraints
No additional constraints

Semantics
VVLog captures an execution of a ConcreteVVCase.

13.2.7 VVProcedure (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVProcedure represents an individual task in a V&V effort (represented by a VVCase), which has
to be performed in order to achieve that effort's overall objective. As with VVCases, the definition
of VVProcedures is separated in to two levels: an abstract and a concrete level.

The concrete VVProcedure represents such a task on a concrete level. It is defined with a
concrete testing environment in mind and provides stimuli and the expected outcome of the
procedure in a form which is directly applicable to this testing environment.

Attributes
No additional attributes

Associations

 abstractVVProcedure : VVProcedure [0..1]

An abstract VVProcedure identified from a concrete VVProcedure.

 vvStimuli : VVStimuli [*] {composite}

Set of involved stimuli.

 vvIntendedOutcome : VVIntendedOutcome [*] {composite}

Set of intended outcomes.

Constraints
[1] Only a concrete VVProcedure can have vvStimuli.

[2] Only a concrete VVProcedure can have vvIntendedOutcome.

file:///C:/Volvo/MAENAD/index.html%23VVProcedure
file:///C:/Volvo/MAENAD/index.html%23VVActualOutcome
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23VVProcedure
file:///C:/Volvo/MAENAD/index.html%23VVStimuli
file:///C:/Volvo/MAENAD/index.html%23VVIntendedOutcome

EAST-ADL Domain Model Specification version V2.1.12

110 (244)

[3] Only a concrete VVProcedure can have an abstractVVProcedure.

Semantics
VVProcedure represents an individual task in a Verifcation/Validation effort.

13.2.8 VVStimuli (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVStimuli represents the input values of the testing environment represented by VVTarget in order
to perform the corresponding VVProcedure.

Since this entity only occurs on the concrete level (i.e. within the context of a concrete VVCase),
the input values must be provided in a form that is directly applicable to the VVTarget(s) defined
for the containing concrete VVCase.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
VVStimuli represents the concrete input values used for a VVProcedure during a
Verification/Validation effort of a VVTarget.

13.2.9 VVTarget (from VerificationValidation)

Generalizations

 TraceableSpecification (from Elements)

Description
VVTarget represents a concrete testing environment in which a particular V&V activity can be
performed. This can be physical hardware or it can be pure software in case of a test by way of
design level simulations.

Usually, a VVTarget will identify one or more elements. However, there are cases in which this is
not true, for example when a VVTarget represents parts of the system's environment. Therefore
the association to element has a minimum cardinality of 0.

VVTargets can be reused across several concrete VVCases.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 element : Identifiable [*]

«instanceRef»

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

111 (244)

Semantics
VVTarget represents a concrete testing environment in which a particular Verification/Validation
activity is performed.

EAST-ADL Domain Model Specification version V2.1.12

112 (244)

Part VI Timing

This part contains the timing constructs for EAST-ADL, which are organized in events and
constraints.

EAST-ADL Domain Model Specification version V2.1.12

113 (244)

14 Timing

14.1 Overview

The timing package contains constructs for defining timing constraints.

Figure 21. Basic TADL2 elements organized in Timing, with TimingConstraints referring to EAST-
ADL Mode.

14.2 Element Descriptions

14.2.1 Event (from Timing) {abstract}

Generalizations

 TimingDescription (from Timing)

Description
The Event class stands for all the forms of identifiable state changes that are possible to constrain
with respect to timing using TADL2.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TimingDescription

EAST-ADL Domain Model Specification version V2.1.12

114 (244)

Semantics
An event denotes a distinct form of state change in a running system, taking place at distinct
points in time called occurrence of the event. That is, a running system can be observed by
identifying certain forms of state changes to watch for, and for each such observation point, noting
the times when changes occur. This notion of observation also applies to a hypothetical predicted
run of a system or a system model - from a timing perspective, the only information that needs to
be in the output of such a prediction is a sequence of times for each observation point, indicating
the times that each event is predicted to occur.

In system models, events appear syntactically as names indicating the state changes of interest.
Semantically, an event name is a variable standing for some statically unknown set of
occurrences. Note that this connection is purely conceptual; occurrences never exist concretely in
any system model as they are a purely semantic notion representing the state changes that can
be observed when a system is executed, or simulated, or perhaps only mathematically predicted.

TADL2 assumes that occurrences are characterized by two pieces of information: a timestamp
indicating when the corresponding state change occurred, and a color that partitions different
event occurrences into groups that should be understood as being causally related. The
timestamp is a real value of SI unit seconds, whereas the color value is drawn from some abstract,
possibly infinite type whose only restriction is that must support an equality test on its values.

14.2.2 EventChain (from Timing)

Generalizations

 TimingDescription (from Timing)

Description
An EventChain is a container for a pair of events that must be causally related.

Attributes
No additional attributes

Associations

 stimulus : Event [1]

The event that stimulates the steps to be taken to respond to this event.

 response : Event [1]

The event that is a response to a stimulus that occurred before.

 segment : EventChain [*] {ordered}

Referred EventChains in sequence refine this EventChain.

Constraints
No additional constraints

Semantics
A system behavior is consistent with respect to an event chain ec if and only if

for each occurrence x in ec.stimulus,

 for each occurrence y in ec.response,

 if x.color = y.color then x < y

14.2.3 PrecedenceConstraint (from Timing)

Generalizations

 TimingConstraint (from Timing)

file:///C:/Volvo/MAENAD/index.html%23TimingDescription
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint

EAST-ADL Domain Model Specification version V2.1.12

115 (244)

Description
The PrecedenceConstraint represents a particular constraint applied on the execution sequence of
functions.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 successive : FunctionPrototype [1..*]

«instanceRef»

 preceding : FunctionPrototype [1]

«instanceRef»

Constraints
No additional constraints

Semantics
The semantics for the PrecedenceConstraint metaclass is to define an association relationship
between Functions, indicating the association relationship such that all predecessors have
completed before the successors are started.

Note: Without a precedence relation, Functions are executed according to their data
dependencies, if these are uni-directional. For bi-directional data dependencies, execution order is
not defined unless the PrecedenceDependency relationship is used.

14.2.4 Timing (from Timing)

Generalizations

 Context (from Elements)

Description
The collection of timing descriptions, namely events and event chains, and the timing constraints
imposed on these events and event chains. This collection can be done across the EAST-ADL
abstraction levels.

Attributes
No additional attributes

Associations

 constraint : TimingConstraint [*] {composite}

 description : TimingDescription [*] {composite}

Constraints
No additional constraints

Semantics
-

14.2.5 TimingConstraint (from Timing) {abstract}

Generalizations

 EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23TimingDescription
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

116 (244)

Description
This abstract element references a mode in order to indicate that the corresponding
TimingConstraint is only valid when the specified mode is active.

Attributes
No additional attributes

Associations

 mode : Mode [0..1]

Reference to the mode in which the timing constraint is valid.

Constraints
No additional constraints

Semantics
The TimingConstraint does not describe what is classically referred to as a "design" constraint but
has the role of a property, requirement, or a validation result. It is a requirement if this
TimingConstraint refines a Requirement (by the Refine relationship). The TimingConstraint is a
validation result if it realizes a VVActualOutcome, it is an intended validation result if it realizes a
VVIntendedOutcome, and in other cases it denotes a property.

14.2.6 TimingDescription (from Timing) {abstract}

Generalizations

 EAElement (from Elements)

Description
An abstract metaclass describing the timing events and their relations by event chains within the
timing model.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

14.2.7 TimingExpression (from Timing)

Generalizations

 EAExpression (from Values)

Description
A Timing Expression, denoted by texp, is a term built from an arithmetic expression by applying an
optional unit and referencing an optional time base. It stands for a value in the real number system
extended with positive and negative infinity.

Grammar:

texp ::= aexp

 | aexp UN

 | aexp on TB

file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAExpression

EAST-ADL Domain Model Specification version V2.1.12

117 (244)

 | aexp UN on TB

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Given a particular variable assignment, the meaning of a timing expression texp in that
assignment is a value in the real number system extended with positive and negative infinity.
Depending on the form of texp, this value is defined as follows:

- If texp is of the form aexp, its meaning is the meaning of aexp in the given variable assignment.

- If texp is of the form aexp UN, its meaning is r * k, where r is the meaning of aexp in the given
variable assignment, and k is the factor of UN in the Universal time base.

- If texp is of the form aexp on TB, its meaning is f (r), where f is the meaning of TB in the given
variable assignment, and r is the meaning of aexp in the same assignment.

- If texp is of the form aexp UN on TB, its meaning is f (r * k), where f is the meaning of TB in the
given variable assignment, r is the meaning of aexp in the same assignment, k is the factor of UN
in DI, and DI is the dimension of TB.

EAST-ADL Domain Model Specification version V2.1.12

118 (244)

15 TimingConstraints

15.1 Overview

TADL2 offers a palette of means to constrain the time occurrences of events. These can roughly
be grouped into restrictions on the recurring delays between a pair of events, restrictions on the
repetitions of a single event, and restrictions on the synchronicity of a set of events. All constraints
provided by TADL2 are defined in this package.

The semantics of some timing constraint is described by references to other timing constraints in
this package. Default attribute values, which apply in a right-to-left manner whenever a constraint
argument list is too short to match all defined attributes, are given when applicable.

A helper constraint RepeatConstraint is defined in TADL2, in modeling a RepetitionConstraint with
jitter = 0 is used instead.

A system behavior satisfies a RepeatConstraint c if and only if

for each subsequence X of c.event,

 if X contains span + 1 occurrences then

 e is the distance between the outermost

 occurrences in X

 and

 c.lower <= e <= c.upper

The RepeatConstraint defines the basic notion of repeated occurrences. If the span attribute is 1
and the lower and upper attributes are equal, the accepted behaviors must be strictly periodic. If
span is still 1 but lower is strictly less than upper, the pattern may deviate from a periodic one in an
accumulating fashion, making the window within which occurrence number N may appear as wide
as N(upper-lower) time units. A span attribute greater than 1 similarly constrains every sequence
of span+1 occurrences, but places no restriction on the distances within shorter sequences.

EAST-ADL Domain Model Specification version V2.1.12

119 (244)

Figure 22. The first of two sets with TADL2 constraints with attributes of type TimingExpression and
references to events.

EAST-ADL Domain Model Specification version V2.1.12

120 (244)

Figure 23. The TADL2 constraints that refer to EventChain, and have attributes of type
TimingExpression.

EAST-ADL Domain Model Specification version V2.1.12

121 (244)

Figure 24. The second of two sets with TADL2 constraints with attributes of type TimingExpression
and references to events. Also shown is the ComparisonConstraint with attributes of type
TimingExpression.

15.2 Element Descriptions

15.2.1 AgeConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An AgeConstraint defines how long before each response a corresponding stimulus must have
occurred.

This constraint provides an alternative to the ordinary DelayConstraint for situations where the
causal relation between event occurrences must be taken into account. It differs from the

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint

EAST-ADL Domain Model Specification version V2.1.12

122 (244)

DelayConstraint in that it applies to an event chain, and only looks at the stimulus occurrences that
have the same color as each particular response occurrence. It is the latest of these stimulus
occurrences that is required to lie within the prescribed time bounds. If the roles of stimulus and
response are swapped, and the time bounds negated, a ReactionConstraint is obtained.

Attributes
No additional attributes

Associations

 scope : EventChain [1]

 maximum : TimingExpression [0..1] {composite}

Default: infinity

 minimum : TimingExpression [0..1] {composite}

Default: 0

Constraints
No additional constraints

Semantics
A system behavior satisfies an AgeConstraint c if and only if

for each occurrence y in c.scope.response,

 there is an occurrence x in c.scope.stimulus such that

 x.color = y.color

 and

 x is maximal in c.scope.stimulus with that color

 and

 c.minimum <= y - x <= c.maximum

15.2.2 ArbitraryConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An ArbitraryConstraint describes an event that occurs irregularly.

An ArbitraryConstraint is equivalent to a combination of Repeat constraints, each one constraining
sequences of i+1 occurrences (that is, i repetition spans), with i ranging from 1 to some given n.

Attributes
No additional attributes

Associations

 event : Event [1]

 maximum : TimingExpression [1..*] {composite}

 minimum : TimingExpression [1..*] {composite}

Constraints
[1] The number of elements in minimum and maximum must be equal.

Semantics
A system behavior satisfies an AribtraryConstraint c if and only if

file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

123 (244)

for each c.minimum index i, the same system behavior satisfies

RepeatConstraint { event = c.event,

lower = c.minimum(i),

upper = c.maximum(i),

span = i }

15.2.3 BurstConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A BurstConstraint describes an event that occurs in semi-regular bursts.

A BurstConstraint expresses the maximum number of event occurrences that may appear in any
interval of a given length, which is equivalent to constraining the same number of repeat spans
(which count one extra occurrence at the end) to have a minimum width of length.

Attributes

 maxOccurences : Integer [1]

Associations

 event : Event [1]

 length : TimingExpression [1] {composite}

 minimum : TimingExpression [0..1] {composite}

Default: 0

Constraints
No additional constraints

Semantics
A system behavior satisfies a BurstConstraint c if and only if

the same system behavior concurrently satisfies

RepeatConstraint { event = c.event,

lower = c.length,

upper = infinity,

span = c.maxOccurrences }

and

RepeatConstraint { event = c.event,

lower = c.minimum }

15.2.4 ComparisonConstraint (from TimingConstraints)

Generalizations
None

Description
A ComparisonConstraint states that a certain ordering relation must exist between two timing
expressions.

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

124 (244)

This constraint is special in that it does not reference any events. Its main purpose is to express
relations between arithmetic variables used in other constraint; for example, stating that the sum of
the variables denoting segment delays in a time-budgeting scenario must be less than the
maximum end-to-end deadline allowed.

Attributes

 operator : ComparisonKind [1]

Associations

 rightOperand : TimingExpression [1] {composite}

 leftOperand : TimingExpression [1] {composite}

Constraints
No additional constraints

Semantics
A system behavior satisfies a ComparisonConstraint c if and only if

c.leftOperand and c.rightOperand are related according to the ordering relation given by
c.operator.

15.2.5 ComparisonKind (from TimingConstraints) «enumeration»

Generalizations
None

Enumeration Literals

 equal

 greaterThan

 greaterThanOrEqual

 lessThan

 lessThanOrEqual

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

15.2.6 DelayConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A DelayConstraint imposes limits between the occurrences of an event called source and an event
called target.

This notion of delay is entirely based on the distance between source and target occurrences;
whether a matching target occurrence is actually caused by the corresponding source occurrence
is of no importance. This means that one-to-many and many-to-one source-target patterns are
allowed, and so are stray target occurrences that are not within the prescribed distance of any
source occurrence.

file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint

EAST-ADL Domain Model Specification version V2.1.12

125 (244)

Attributes
No additional attributes

Associations

 target : Event [1]

 source : Event [1]

 lower : TimingExpression [0..1] {composite}

Default: 0

 upper : TimingExpression [0..1] {composite}

Default: infinity

Constraints
No additional constraints

Semantics
A system behavior satisfies a DelayConstraint c if and only if

for each occurrence x of c.source,

 there is an occurrence y of c.target such that

 c.lower <= y - x <= c.upper

15.2.7 ExecutionTimeConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An ExecutionTimeConstraint limits the time between the starting and stopping of an executable
entity (function), not counting the intervals when the execution of such an executable entity
(function) has been interrupted.

Attributes
No additional attributes

Associations

 preemption : Event [0..*] {ordered}

 stop : Event [1]

 start : Event [1]

 resume : Event [0..*] {ordered}

 upper : TimingExpression [0..1] {composite}

 lower : TimingExpression [0..1] {composite}

Constraints
No additional constraints

Semantics
A system behavior satisfies an ExecutionTimeConstraint c if and only if

for each occurrence x of event c.start,

 E is the set of times between x and the next c.stop

 occurrence, excluding the times between any c.preempt

file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

126 (244)

 occurrence and its next c.resume occurrence,

and

 c.lower <= length of all continuous intervals in E <= c.upper

15.2.8 InputSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An InputSynchronizationConstraint defines how far apart the responses that belong to a certain
stimulus may occur.

This constraint provides an alternative to the ordinary SynchronizationConstraint for situations
where the causal relation between event occurrences must be taken into account. It differs from
the SynchronizationConstraint in that it applies to a set of event chains, and only looks at the
stimulus occurrences that have the same color as each particular response occurrence. It is the
latest of these stimulus occurrences for each chain that are required to lie no more than tolerance
time units apart. If the roles of stimuli and responses are swapped, an
OutputSynchronizationConstraint is obtained.

Attributes
No additional attributes

Associations

 scope : EventChain [2..*]

 tolerance : TimingExpression [0..1] {composite}

Default: infinity

Constraints
[1] All scopes must reference one common response event.

Semantics
A system behavior satisfies an InputSynchronizationConstraint c if and only if

for each occurrence y in c.scope(1).response,

 there is a time t such that for each c.scope index i,

 there is an occurrence x in c.scope(i).stimulus such that

 y.color = x.color

 and

 x is maximal in c.scope(i).stimulus with that color

 and

 0 <= x - t <= c.tolerance

15.2.9 OrderConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An OrderConstraint imposes an order between the occurrences of an event called source and an
event called target.

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint

EAST-ADL Domain Model Specification version V2.1.12

127 (244)

The OrderConstraint is a minor variant of an application of StrongDelayConstraint with lower set to
0 and upper to infinity; the difference being that the OrderConstraint does not allow matching
target and source occurrences to coincide.

Attributes
No additional attributes

Associations

 source : Event [1]

 target : Event [1]

Constraints
No additional constraints

Semantics
A system behavior satisfies an OrderConstraint c if and only if

c.source and c.target have the same number of occurrences,

and for each index i,

 if there is an i:th occurrence of c.source at time x, there is

 also an i:th occurrence of c.target at time y such that

 x < y

15.2.10 OutputSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
An OutputSynchronizationConstraint defines how far apart the responses that belong to a certain
stimulus may occur.

This constraint provides an alternative to the ordinary SynchronizationConstraint for situations
where the causal relation between event occurrences must be taken into account. It differs from
the SynchronizationConstraint in that it applies to a set of event chains, and only looks at the
response occurrences that have the same color as each particular stimulus occurrence. It is the
earliest of these response occurrences for each chain that are required to lie no more than
tolerance time units apart. If the roles of stimuli and responses are swapped, an
InputSynchronizationConstraint is obtained.

Attributes
No additional attributes

Associations

 scope : EventChain [2..*]

 tolerance : TimingExpression [0..1] {composite}

Default: infinity

Constraints
[1] All scopes must reference one common stimulus event.

Semantics
A system behavior satisfies an OutputSynchronizationConstraint c if and only if

for each occurrence x in c.scope(1).stimulus,

 there is a time t such that for each c.scope index i,

file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

128 (244)

 there is an occurrence y in c.scope(i).response such that

 y.color = x.color

 and

 y is minimal in c.scope(i).response with that color

 and

 0 <= y - t <= c.tolerance

15.2.11 PatternConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A PatternConstraint describes an event that exhibits a known pattern relative to the occurrences of
an imaginary event.

A PatternConstraint requires the constrained event occurrences to appear at a predetermined
series of offsets from a sequence of reference points in time that are strictly periodic. The exact
placement of these reference points is irrelevant; if one placement exists that is periodic and
allows the event occurrences to be reached at the desired offsets, the constraint is satisfied.

Attributes
No additional attributes

Associations

 event : Event [1]

 period : TimingExpression [1] {composite}

 jitter : TimingExpression [0..1] {composite}

Default: 0

 minimum : TimingExpression [0..1] {composite}

Default: 0

 offset : TimingExpression [1..*] {composite}

Constraints
No additional constraints

Semantics
A system behavior satisfies a PatternConstraint c if and only if

there is a set of times X such that the same system behavior concurrently satisfies

PeriodicConstraint { event = X,

period = c.period }

and for each c.offset index i,

DelayConstraint { source = X,

target = c.event,

lower = c.offset(i),

upper = c.offset(i) + c.jitter }

and

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

129 (244)

RepeatConstraint { event = c.event,

lower = c.minimum }

15.2.12 PeriodicConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A PeriodicConstraint describes an event that occurs periodically.

Attributes
No additional attributes

Associations

 event : Event [1]

 minimum : TimingExpression [0..1] {composite}

Default: 0

 period : TimingExpression [1] {composite}

 jitter : TimingExpression [0..1] {composite}

Default: 0

Constraints
No additional constraints

Semantics
A system behavior satisfies a PeriodicConstraint c if and only if

the same system behavior satisfies

SporadicConstraint { event = c.event,

lower = c.period,

upper = c.period,

jitter = c.jitter,

minimum = c.minimum }

15.2.13 ReactionConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A ReactionConstraint defines how long after the occurrence of a stimulus a corresponding
response must occur.

This constraint provides an alternative to the ordinary DelayConstraint for situations where the
causal relation between event occurrences must be taken into account. It differs from the
DelayConstraint in that it applies to an event chain, and only looks at the response occurrences
that have the same color as each particular stimulus occurrence. It is the earliest of these
response occurrences that is required to lie within the prescribed time bounds. If the roles of
stimulus and response are swapped, and the time bounds negated, an AgeConstraint is obtained.

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint

EAST-ADL Domain Model Specification version V2.1.12

130 (244)

Attributes
No additional attributes

Associations

 scope : EventChain [1]

 maximum : TimingExpression [0..1] {composite}

Default: infinity

 minimum : TimingExpression [0..1] {composite}

Default: 0

Constraints
No additional constraints

Semantics
A system behavior satisfies a ReactionConstraint c if and only if

for each occurrence x in c.scope.stimulus,

 there is an occurrence y in c.scope.response such that

 y.color = x.color

 and

 y is minimal in c.scope.response with that color

 and

 c.minimum <= y - x <= c.maximum

15.2.14 RepetitionConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A RepetitionConstraint describes the distribution of the occurrences of a single event, including the
allowance for jitter.

The RepetitionConstraint extends the basic notion of repeated occurrences by allowing local
deviations from the ideal repetitive pattern described by a RepeatConstraint. Its jitter, lower and
upper attributes all contribute to the width of the window in which occurrence number N is
accepted, according to the formula N(upper-lower) + jitter. That is, with lower = upper, the
uncertainty of where occurrence N may be found does not grow with an increasing N, unlike the
case when lower differs from upper by a similar amount and jitter is 0. By adjusting all three
attributes, a desired balance between accumulating and non-accumulating uncertainties can be
obtained.

Attributes

 span : Integer = 1 [1]

Associations

 event : Event [1]

 jitter : TimingExpression [0..1] {composite}

Default: 0

 lower : TimingExpression [0..1] {composite}

Default: 0

file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

131 (244)

 upper : TimingExpression [0..1] {composite}

Default: infinity

Constraints
No additional constraints

Semantics
A system behavior satisfies a RepetitionConstraint c if and only if

the same system behavior concurrently satisfies

RepeatConstraint { event = X,

lower = c.lower,

upper = c.upper,

span = c.span }

and

StrongDelayConstraint { source = X,

target = c.event,

lower = 0,

upper = c.jitter }

15.2.15 SporadicConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A SporadicConstraint describes an event that occurs sporadically.

The SporadicConstraint is just an application of the RepetitionConstraint with a default span
attribute of 1, combined with an additional requirement that the effective minimum distance
between any two occurrences must be at least the value given by minimum (even if lower-jitter
would suggest a smaller value).

Attributes
No additional attributes

Associations

 event : Event [1]

 lower : TimingExpression [0..1] {composite}

Default: 0

 minimum : TimingExpression [0..1] {composite}

Default: 0

 upper : TimingExpression [0..1] {composite}

Default: infinity

 jitter : TimingExpression [0..1] {composite}

Default: 0

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

132 (244)

Semantics
A system behavior satisfies a SporadicConstraint c if and only if

the same system behavior concurrently satisfies

RepetitionConstraint { event = c.event,

lower = c.lower,

upper = c.upper,

jitter = c.jitter }

and

RepeatConstraint { event = c.event,

lower = c.minimum }

15.2.16 StrongDelayConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A StrongDelayConstraint imposes limits between each indexed occurrence of an event called
source and the identically indexed occurrence of an event called target.

The strong delay notion requires source and target occurrences to appear in lock-step. Only one-
to-one source-target patterns are allowed, and no stray target occurrences are accepted.

Strong synchronization differs from the ordinary form of SynchronizationConstraint by grouping
event occurrences into synchronization clusters strictly according to their index. This means that
multiple occurrences of a single event cannot belong to a single cluster, and clusters may not
share occurrences. Strong synchronization tightens the requirements compared to ordinary
synchronization in much the same way as StrongDelayConstraint refines the ordinary
DelayConstraint.

Attributes
No additional attributes

Associations

 source : Event [1]

 target : Event [1]

 lower : TimingExpression [0..1] {composite}

Default: 0

 upper : TimingExpression [0..1] {composite}

Default: infinity

Constraints
No additional constraints

Semantics
A system behavior satisfies a StrongDelayConstraint c if and only if

c.source and c.target have the same number of occurrences,

and for each index i,

 if there is an i:th occurrence of c.source at time x

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

133 (244)

 there is also an i:th occurrence of c.target at time y

 such that

 c.lower <= y - x <= c.upper

15.2.17 StrongSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A StrongSynchronizationConstraint describes how tightly the occurrences of a group of events
follow each other.

Attributes
No additional attributes

Associations

 event : Event [2..*]

 tolerance : TimingExpression [0..1] {composite}

Default: infinity

Constraints
No additional constraints

Semantics
A system behavior satisfies a StrongSynchronizationConstraint c if and only if

there is a set of times X such that for each c.event index i, the same system behavior satisfies

StrongDelayConstraint { source = X,

target = c.event(i),

lower = 0,

upper = c.tolerance }

15.2.18 SynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from Timing)

Description
A SynchronizationConstraint describes how tightly the occurrences of a group of events follow
each other.

This form of synchronization only takes the width and completeness of each occurrence cluster
into account; it does not care whether some events occur multiple times within a cluster or whether
some clusters overlap and share occurrences. In particular, event occurrences are not partitioned
into clusters according to their role or what has caused them. Stray occurrences of single events
are not allowed, though, since these would just count as incomplete clusters according to this
constraint.

Attributes
No additional attributes

Associations

 event : Event [2..*]

file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingExpression
file:///C:/Volvo/MAENAD/index.html%23TimingConstraint
file:///C:/Volvo/MAENAD/index.html%23Event

EAST-ADL Domain Model Specification version V2.1.12

134 (244)

 tolerance : TimingExpression [0..1] {composite}

Default: infinity

Constraints
No additional constraints

Semantics
A system behavior satisfies a SynchronizationConstraint c if and only if

there is a set of times X such that for each c.event index i, the same system behavior concurrently
satisfies

DelayConstraint { source = X,

target = c.event(i),

lower = 0,

upper = c.tolerance }

and

DelayConstraint { source = c.event(i),

target = X,

lower = -c.tolerance,

upper = 0}

file:///C:/Volvo/MAENAD/index.html%23TimingExpression

EAST-ADL Domain Model Specification version V2.1.12

135 (244)

16 Events

16.1 Overview

This section describes the concept of events for EAST-ADL.

Figure 25. The events for EAST-ADL functional modeling.

Figure 3. The Events are defined within AUTOSAR and EAST-ADL. These events refer to the
structural models of AUTOSAR and EAST-ADL respectively.

EAST-ADL Domain Model Specification version V2.1.12

136 (244)

16.2 Element Descriptions

16.2.1 AUTOSAREvent (from Events)

Generalizations

 Event (from Timing)

Description
An AUTOSAREvent instance refers to an event of the form defined by AUTOSAR.

Attributes
No additional attributes

Associations

 ref : TimingDescriptionEvent [1]

Constraints
No additional constraints

Semantics
-

16.2.2 EventFaultFailure (from Events)

Generalizations

 Event (from Timing)

Attributes
No additional attributes

Associations

 faultFailure : FaultFailure [1]

Constraints
No additional constraints

Semantics
-

16.2.3 EventFeatureFlaw (from Events)

Generalizations

 Event (from Timing)

Attributes
No additional attributes

Associations

 featureFlaw : FeatureFlaw [1]

Constraints
No additional constraints

Semantics
-

file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23TimingDescriptionEvent
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23FaultFailure
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23FeatureFlaw

EAST-ADL Domain Model Specification version V2.1.12

137 (244)

16.2.4 EventFunction (from Events)

Generalizations

 Event (from Timing)

Description
An event of a Function refers to the triggering of the Function, i.e., when the input data is
consumed. It can be used in conjunction with FunctionTrigger to define a time-driven triggering for
a function. In this case the FunctionTrigger points to the EventFunction of the function and defines
a triggerPolicy set to TIME. The timing constraint associated to the EventFunction provides
information about the period.

Compare categories of AUTOSAR runnables:

1a triggering only on start and finish (this type of event)

1b triggering allowed anytime during the execution (events on ports, see EventFunctionFlowPort).

Attributes
No additional attributes

Associations

 functionType : FunctionType [0..1]

The event is valid for all occurrences of this function.

Dependencies

 function : FunctionPrototype [0..1]

«instanceRef»

Constraints
[1] An EventFunction either identifies a FunctionType or a FunctionPrototype as its target function.

Semantics
The EventFunction refers to the triggering event of a referenced functionType or function
(prototype). Triggering is the time when the function consumes data.

16.2.5 EventFunctionClientServerPort (from Events)

Generalizations

 Event (from Timing)

 EAExpression (from Values)

Description
Event that refers to the occurrence of data being sent or received at the client/server port,
according to the attribute eventKind, i.e., when the input data is sent / received, or when the output
data is produced / received.

Attributes

 eventKind : EventFunctionClientServerPortKind [1]

Associations
No additional associations

Dependencies

 port : FunctionClientServerPort [1]

«instanceRef»

file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23FunctionClientServerPort

EAST-ADL Domain Model Specification version V2.1.12

138 (244)

Constraints
[1] eventKind is sentRequest or receivedResponse for a FunctionClientServerPort of type client.
Rationale: Only these values make sense for client ports.

[2] eventKind is receivedRequest or sentResponse for a FunctionClientServerPort of type server.
Rationale: Only these values make sense for server ports.

Semantics
EventFunctionClientServerPort refers to the time when data is sent or received at the
ClientServerPort.

16.2.6 EventFunctionClientServerPortKind (from Events) «enumeration»

Generalizations
None

Description
Possible values of eventKind.

Enumeration Literals

 receivedRequest

Request arrived at server.

 receivedResponse

Response arrived at client.

 sentRequest

Request sent from client.

 sentResponse

Response sent from server.

Associations
No additional associations

Constraints
No additional constraints

Semantics
See each literal.

16.2.7 EventFunctionFlowPort (from Events)

Generalizations

 Event (from Timing)

 EAExpression (from Values)

Description
Event that refers to the occurrence of data being sent (out port) or received (in port) at the flow
port, i.e., when data is sent or received.

Attributes
No additional attributes

Associations
No additional associations

file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23EAExpression

EAST-ADL Domain Model Specification version V2.1.12

139 (244)

Dependencies

 port : FunctionFlowPort [1]

«instanceRef»

Constraints
No additional constraints

Semantics
EventFunctionFlowPort refers to the time when data is sent or received at the FunctionFlowPort.

16.2.8 ExternalEvent (from Events)

Generalizations

 Event (from Timing)

Description
An ExternalEvent instance stands for some particular form of state change.

It is implied that the attribute description uniquely identifies the intended form of state change. It is
also assumed that a description string is sufficiently informative to determine an unambiguous set
of occurrences for each observation.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

16.2.9 ModeEvent (from Events)

Generalizations

 Event (from Timing)

Description
A mode that identifies when the mode starts or ends.

Attributes
No additional attributes

Associations

 start : Mode [*]

The mode that is started.

 end : Mode [*]

The mode that ends.

Constraints
No additional constraints

Semantics
-

file:///C:/Volvo/MAENAD/index.html%23FunctionFlowPort
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23Mode

EAST-ADL Domain Model Specification version V2.1.12

140 (244)

Part VII Dependability

This part contains elements related to Dependability. It is organized as general Dependability
providing support for safety information organization according to ISO 26262, ErrorModel,
SafetyConstraints and SafetyRequirements. The SafetyCase package supports safety reasoning.

EAST-ADL Domain Model Specification version V2.1.12

141 (244)

17 Dependability

17.1 Overview

Dependability of a system is the system's ability to ensure service failures are at a level of
frequency and severity that is acceptable. Dependability includes several aspects, namely
Availability, Reliability, Safety, Integrity and Maintainability. The Dependability package includes
support for defining and classifying safety requirements through preliminary Hazard Analysis Risk
Assessment, tracing and categorizing safety requirements according to their role in the safety life-
cycle, formalizing safety requirements using safety constraints, formalizing and assessing fault
propagation through error models, and organizing evidence of safety in a Safety Case.

The support for safety is designed to support the automotive standard for Functional Safety,
ISO/DIS 26262.

FunctionalSafetyConcept Functional Safety Concept

FunctionPort -

FunctionPrototype -

FunctionType -

Ground Indirect: Used to provide a ground in a Safety Case

HardwareComponentPrototype -

HardwareComponentType -

HardwarePin -

Hazard Hazard

HazardousEvent HazardousEvent

Identifiable -

InternalFaultPrototype Indirect: Used to declare internal faults of components of the Error
Model.

Item Item

LifecycleStageKind Indirect: Used to define the lifecycle stage of a particular safety case.

Mode Used to represent Operating Mode including Safe State,

OperationalSituation OperationalSituation

ProcessFaultPrototype Indirect: Used to represent process faults in components of an error
model. This allows declaration of required development rigor in terms of ASIL through a safety
constraint.

QuantitativeSafetyConstraint Used to define Failure Rate

Rationale Indirect: Used to declare Rationale in a safety case

Requirement Used to represent Functional, technical, hardware and software requirements

RequirementsContainer Used to organize requirements in a structure

RequirementsRelationship Used to relate between requirements

SafetyCase Indirect: The safety case can be used to organize the ISO26262 related information
showing that the system is safe.

EAST-ADL Domain Model Specification version V2.1.12

142 (244)

SafetyConstraint Used to define the ASIL level on a particular fault or failure

SafetyGoal Safety Goal

SeverityClassKind Severity enumeration S0, S1, S2 or S3

SystemModel -

TechnicalSafetyConcept Container element for the Technical Safety Requirements allocated
to architectural elements, that together form the Technical Safety Concept

TraceableSpecification -

UseCase Used in the role Operational Situation for Hazardous event

Warrant Indirect: Represents warrant in a safety case

VehicleFeature A set of Vehicle Features, realized by architectural elements, makes up the
Item

Figure 3. Diagram for organization of dependability related information.

EAST-ADL Domain Model Specification version V2.1.12

143 (244)

Figure 3. Diagram for Dependability.

17.2 Element Descriptions

17.2.1 ControllabilityClassKind (from Dependability) «enumeration»

Generalizations
None

Description
The ControllabilityClassKind is an enumeration metaclass with enumeration literals indicating
controllability attributes C0, C1, C2 or C3 in accordance with ISO26262.

Enumeration Literals

 C0

Controllable in general.

 C1

Simply controllable.

 C2

EAST-ADL Domain Model Specification version V2.1.12

144 (244)

Normally controllable.

 C3

Difficult to control or uncontrollable.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics are defined at each enumeration literal and fully defined in the ISO26262 standard.

17.2.2 Dependability (from Dependability)

Generalizations

 Context (from Elements)

Description
The collection of dependability related information. This includes safety requirements, safety
cases, safety constraints, and error modeling. This collection can be used across the EAST-ADL
abstraction levels.

Attributes
No additional attributes

Associations

 technicalSafetyConcept : TechnicalSafetyConcept [*] {composite}

 eaDatatype : EADatatype [*] {composite}

Datatypes defined in this context.

 safetyCase : SafetyCase [*] {composite}

 quantitiativeSafetyConstraint : QuantitativeSafetyConstraint [*] {composite}

 hazard : Hazard [*] {composite}

 functionalSafetyConcept : FunctionalSafetyConcept [*] {composite}

 faultFailure : FaultFailure [*] {composite}

 errorModelType : ErrorModelType [*] {composite}

 featureFlaw : FeatureFlaw [*] {composite}

 item : Item [*] {composite}

 safetyGoal : SafetyGoal [*] {composite}

 safetyConstraint : SafetyConstraint [*] {composite}

 hazardousEvent : HazardousEvent [*] {composite}

Constraints
No additional constraints

Semantics
Dependability is a container element that collects elements related to dependability. It is possible
to have several Dependability elements to organize related dependability information in dedicated
containers.

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23TechnicalSafetyConcept
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23SafetyCase
file:///C:/Volvo/MAENAD/index.html%23QuantitativeSafetyConstraint
file:///C:/Volvo/MAENAD/index.html%23Hazard
file:///C:/Volvo/MAENAD/index.html%23FunctionalSafetyConcept
file:///C:/Volvo/MAENAD/index.html%23FaultFailure
file:///C:/Volvo/MAENAD/index.html%23ErrorModelType
file:///C:/Volvo/MAENAD/index.html%23FeatureFlaw
file:///C:/Volvo/MAENAD/index.html%23Item
file:///C:/Volvo/MAENAD/index.html%23SafetyGoal
file:///C:/Volvo/MAENAD/index.html%23SafetyConstraint
file:///C:/Volvo/MAENAD/index.html%23HazardousEvent

EAST-ADL Domain Model Specification version V2.1.12

145 (244)

17.2.3 DevelopmentCategoryKind (from Dependability) «enumeration»

Generalizations
None

Description
DevelopmentCategoryKind is an enumeration with enumeration literals indicating whether the item
is a modification of an existing item or if it is a new development.

Enumeration Literals

 modificationOfExistingItem

In case of a modification the relevant lifecycle sub-phases and activities shall be
determined.

 newItemDevelopment

In case of a new development, the entire lifecycle shall be passed through.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics are defined at each enumeration literal and fully defined in the ISO26262 standard.

17.2.4 ExposureClassKind (from Dependability) «enumeration»

Generalizations
None

Description
The ExposureClassKind is an enumeration metaclass with enumeration literals indicating the
probability attributes E1, E2, E3 or E4 in accordance with ISO26262.

Enumeration Literals

 E1

Rare events. Situations that occur less often than once a year for the great majority of
drivers

 E2

Sometimes. Situations that occur a few times a year for the great majority of drivers

 E3

Quite often. Situations that occur once a month or more often for an average driver

 E4

Often. All situations that occur during almost every drive on average

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics are defined at each enumeration literal and fully defined in the ISO26262 standard.

EAST-ADL Domain Model Specification version V2.1.12

146 (244)

17.2.5 FeatureFlaw (from Dependability)

Generalizations

 TraceableSpecification (from Elements)

Description
FeatureFlaw denotes an abstract failure of a set of items, i.e. an inability to fulfill one or several of
its requirements.

Attributes
No additional attributes

Associations

 nonFulfilledRequirement : Requirement [*]

Identifies the requirements that are not fulfilled.

 item : Item [1..*]

The item(s) for which the FeatureFlaw is identified.

Constraints
No additional constraints

Semantics
FeatureFlaw represents functional anomalies derivable from each foreseeable source,
nonFulfilledRequirements identifies those requirements that correspond to the FeatureFlaw.

17.2.6 Hazard (from Dependability)

Generalizations

 TraceableSpecification (from Elements)

Description
The Hazard metaclass represents a condition or state in the system that may contribute to
accidents. The Hazard is caused by malfunctioning behavior of E/E safety-related systems
including interaction of these systems.

The Hazard does not address hazards such as electric shock, fire, smoke, heat, radiation, toxicity,
flammability, reactivity, corrosion, release of energy, and similar hazards unless directly caused by
malfunctioning behavior of safety related electrical/electronic systems.

Attributes
No additional attributes

Associations

 item : Item [1..*]

The item for which the Hazard is identified.

 malfunction : FeatureFlaw [1..*]

The deviation of the item's operation compared to specified behavior.

Constraints
No additional constraints

Semantics
The Hazard element represents a condition or state in the system that may contribute to
accidents. The associated malfunction identifies the FeatureFlaw that corresponds to the Hazard.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23Item
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Item
file:///C:/Volvo/MAENAD/index.html%23FeatureFlaw

EAST-ADL Domain Model Specification version V2.1.12

147 (244)

17.2.7 HazardousEvent (from Dependability)

Generalizations

 TraceableSpecification (from Elements)

Description
The HazardousEvent metaclass represents a combination of a Hazard and a specific situation, the
latter being characterized by operating mode and operational situation in terms of a particular use
case, environment and traffic.

Attributes

 classificationAssumptions : String [0..1]

The classificationAssumptions attribute denotes assumptions concerning the classification
of the Hazard.

 controllability : ControllabilityClassKind [1]

The controllability by the driver or other traffic participants defined by the enumeration C0,
C1, C2 or C3 in accordance with ISO26262.

 exposure : ExposureClassKind [1]

The probability of exposure of the operational situations defined by the probability attributes
E1, E2, E3 or E4 in accordance with ISO26262.

 hazardClassification : ASILKind [1]

The ASIL-Level shall be determined for each hazardous event using the estimation
parameters in accordance with ISO26262.

 severity : SeverityClassKind [1]

The severity of potential harm defined by the severity attributes S0, S1, S2 or S3 in
accordance with ISO26262.

Associations

 operatingMode : Mode [*]

OperatingMode denotes the Operating mode of the item.

 externalMeasures : RequirementsRelationship [*]

 traffic : OperationalSituation [*]

A definition of the traffic situation in terms of adjacent vehicles, pedestrians and other
dynamic aspects. Represents the external and dynamic aspects of the vehicle operating
situation.

 environment : OperationalSituation [*]

A definition of the road environment in terms of road conditions, lanes, geometry, etc.
Represents the external and static aspects of the vehicle operating situation.

 operationalSituationUseCase : UseCase [1..*]

Operational situation with respect to the activities of actors, typically the driver.

 hazard : Hazard [1..*]

The Hazard that together with the operational situation constitutes the HazardousEvent.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23RequirementsRelationship
file:///C:/Volvo/MAENAD/index.html%23OperationalSituation
file:///C:/Volvo/MAENAD/index.html%23OperationalSituation
file:///C:/Volvo/MAENAD/index.html%23UseCase
file:///C:/Volvo/MAENAD/index.html%23Hazard

EAST-ADL Domain Model Specification version V2.1.12

148 (244)

Semantics
The HazardousEvent denotes a combination of a Hazard and an operational situation. The
controllability and severity attributes shall be consistent with the operational situation and
operational scenario, and the Exposure shall reflect the likelihood of the operational situation and
scenario.

17.2.8 Item (from Dependability)

Generalizations

 TraceableSpecification (from Elements)

Description
The Item entity identifies the scope of safety information and the safety assessment, i.e. the part
of the system onto which the ISO26262 related information applies. Safety analyses are carried
out on the basis of an item definition and the safety concepts are derived from it.

Attributes

 developmentCategory : DevelopmentCategoryKind [1]

The Item entity identifies the scope of safety information and the safety assessment, i.e.
the part of the system onto which the ISO26262 related information applies. Safety
analyses are carried out on the basis of an item definition and the safety concepts are
derived from it.

Associations

 vehicleFeature : VehicleFeature [1..*]

Constraints
No additional constraints

Semantics
Item represents the scope of safety information and the safety assessment through its reference
to one or several Features.

17.2.9 SeverityClassKind (from Dependability) «enumeration»

Generalizations
None

Description
The SeverityClassKind is an enumeration metaclass with enumeration literals indicating the
severity attributes S0, S1, S2 or S3 in accordance with ISO26262.

Enumeration Literals

 S0

No injuries.

 S1

Light and moderate injuries.

 S2

Severe and life-threatening injuries (survival probable).

 S3

Life-threatening injuries (survival uncertain), fatal injuries.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23VehicleFeature

EAST-ADL Domain Model Specification version V2.1.12

149 (244)

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics are defined at each enumeration literal and fully defined in the ISO26262 standard.

EAST-ADL Domain Model Specification version V2.1.12

150 (244)

18 ErrorModel

18.1 Overview

The EAST-ADL sub-package for error modeling provides support for safety engineering by
representing possible incorrect behaviors of a system in its operation (e.g., component errors and
their propagations).

Abnormal behaviors of architectural elements as well as their instantiations in a particular product
context can be represented. This forms a basis for safety analysis through external techniques
and tools. Through the integration with other language constructs, definitions of error behaviors
and hazards can be traced to the specifications of safety requirements, and further to the
subsequent functional and non-functional requirements on error handling and hazard mitigations
as well as to the necessary V&V efforts.

Error behaviors are treated as a separated view, orthogonal to the nominal architecture model.
This separation of concern in modeling is considered necessary in order to avoid the undesired
effects of error modeling, such as the risk of mixing nominal and erroneous behavior in regards to
comprehension, reuse, and system synthesis (e.g., code generation).

A key element of the Error Model is the distinction between Fault and Failure. The terms are
stated from the perspective of the component: An incoming flaw represent a Fault for the
component that may or may not result in a component failure. An internal flaw is Fault that may or
may not result in a component failure. A flaw that is propagated out of the component is a Failure.

EAST-ADL Domain Model Specification version V2.1.12

151 (244)

Figure 3. Diagram for ErrorBehavior.

Figure 3. The EAST-ADL metaclasses for defining the error model structure.

18.2 Element Descriptions

18.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype»

Generalizations

 EAElement (from Elements)

Description
The Anomaly metaclass represents a Fault that may occur internally in an ErrorModel or be
propagated to it, or a Failure that is propagated out of an Error Model. The anomaly may represent
different Faults or Failures depending on the range of its EADatatype. Typically, the EADatatype is
an Enumeration, for example:

BrakeAnomaly:

- BrakePressureTooLow

Semantics="brake pressure is below 20% of requested value"

- Omission

Semantics="brake pressure is below 10% of maximal brake pressure"

- Comission

Semantics="brake pressure exceeds requested value with more than 10% of maximal brake
pressure"

Semantics may also be a more formal expression defining in the type of the nominal datatype what
value range is considered a fault. This depends on the user and tooling available.

Attributes
No additional attributes

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

152 (244)

Associations

 type : EADatatype [1]

«isOfType»

The declaration of port type.

Constraints
No additional constraints

Semantics
An anomaly refers to a condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc., or from someone's
perceptions or experiences (ISO26262). The set of available faults or failures represented by the
Anomaly is defined by its EADatatype, typically an enumeration type like {omission, commission}.
It is an abstract class further specialized with metaclasses for different types of fault/failure.

18.2.2 ErrorBehavior (from ErrorModel)

Generalizations

 EAElement (from Elements)

Description
ErrorBehavior represents the descriptions of failure logics or semantics that the target element
identified by the ErrorModelType exhibits. Typically the target is a system, a function, a software
component, or a hardware device.

Each ErrorBehavior description relates the occurrences of internal faults and incoming external
faults to failures. The faults and failures that the errorBehavior propagates to and from the target
element are declared through the ports of the error model.

Attributes

 failureLogic : String [0..1]

The specification of error behavior based on an external formalism or the path to the file
containing the external specification.

 type : ErrorBehaviorKind [1]

The type of formalism applied for the error behavior description.

Associations

 internalFault : InternalFaultPrototype [*]

internalFaults that influence the errorBehavior.

 processFault : ProcessFaultPrototype [*]

processFaults that may affect the errorBehavior.

 internalFailure : FailureOutPort [0..*]

The failure of parts (i.e. ErrorModelPrototypes).

 externalFailure : FailureOutPort [1..*]

Failures that may result from the ErrorBehavior.

 externalFault : FaultInPort [*]

external(incoming) faults that influence the errorBehavior.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23InternalFaultPrototype
file:///C:/Volvo/MAENAD/index.html%23ProcessFaultPrototype
file:///C:/Volvo/MAENAD/index.html%23FailureOutPort
file:///C:/Volvo/MAENAD/index.html%23FailureOutPort
file:///C:/Volvo/MAENAD/index.html%23FaultInPort

EAST-ADL Domain Model Specification version V2.1.12

153 (244)

Semantics
ErrorBehavior defines the error propagation logic of its containing ErrorModelType.

The ErrorBehavior description represents the error propagations from internal faults or incoming
faults to external failures. Faults are identified by the internalFault and externalFault associations
respectively. The propagated failures are identified by the externalFailure association.

The ErrorBehavior is defined in the failureLogic string, either directly or as a URL referencing an
external specification.

The failureLogic can be based on different formalisms, depending on the analysis techniques and
tools available. This is indicated by its type:ErrorBehaviorKind attribute. The failureLogic attribute
contains the actual failure propagation logic.

18.2.3 ErrorBehaviorKind (from ErrorModel) «enumeration»

Generalizations
None

Description
The ErrorBehaviorKind metaclass represents an enumeration of literals describing various types of
formalisms used for specifying error behavior.

Enumeration Literals

 AADL

A specification of error behavior according to the external formalism AADL.

 ALTARICA

A specification of error behavior according to the external formalism ALTARICA.

 HIP_HOPS

A specification of error behavior according to the external formalism HiP-HOPS.

 OTHER

A specification of error behavior according to other user defined formalism.

Associations
No additional associations

Constraints
No additional constraints

Semantics
ErrorBehaviorKind represents different formalisms for ErrorBehavior. The semantics are defined at
each enumeration literal.

18.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototype»

Generalizations

 EAElement (from Elements)

 EAPrototype (from Elements)

Description
The ErrorModelPrototype is used to define hierarchical error models allowing additional detail or
structure to be described in the error model of a particular target. A hierarchal structure can also
be defined when several ErrorModels are integrated into a larger ErrorModel representing a
system integrated from several targets.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAPrototype

EAST-ADL Domain Model Specification version V2.1.12

154 (244)

Typically the target is a system/subsystem, a function, a software component, or a hardware
device.

Attributes
No additional attributes

Associations

 type : ErrorModelType [1]

«isOfType»

The ErrorModelType that types the ErrorModelPrototype.

 target : Identifiable [1]

The target element (i.e., a system, a function, a component, or hardware device) owning
the anomalies.

ARElement can also be the target or ErrorModelType.

Dependencies

 functionTarget : FunctionPrototype [*]

«instanceRef»

 hwTarget : HardwareComponentPrototype [*]

«instanceRef»

Constraints
No additional constraints

Semantics
An ErrorModelPrototype represents an occurrence of the ErrorModelType that types it.

18.2.5 ErrorModelType (from ErrorModel) «atpType»

Generalizations

 EAType (from Elements)

 TraceableSpecification (from Elements)

Description
ErrorModelType and ErrorModelPrototype support the hierarchical composition of error models
based on the type-prototype pattern also adopted for the nominal architecture composition. The
purpose of the error models is to represent information relating to the anomalies of a nominal
model element.

An ErrorModelType represents the internal faults and fault propagations of the nominal element
that it targets.

Typically the target is a system/subsystem, a function, a software component, or a hardware
device.

ErrorModelType inherits the abstract metaclass TraceableSpecification, allowing the
ErrorModelType to be referenced from its design context in a similar way as requirements, test
cases and other specifications.

Attributes
No additional attributes

Associations

 target : FunctionType [*]

file:///C:/Volvo/MAENAD/index.html%23ErrorModelType
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23EAType
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23FunctionType

EAST-ADL Domain Model Specification version V2.1.12

155 (244)

The nominal FunctionType whose ErrorModel is defined by the ErrorModelType.

 hwTarget : HardwareComponentType [*]

 internalFault : InternalFaultPrototype [*] {composite}

An internal fault that the ErrorModelType may propagate or mask.

 faultFailureConnector : FaultFailurePropagationLink [*] {composite}

The contained links for internal propagations of faults/failures between the subordinate
error models.

 processFault : ProcessFaultPrototype [*] {composite}

A processFault that affects the ErrorModelType. Process faults cannot be masked, and
propagate to all defined failures.

 part : ErrorModelPrototype [*] {composite}

The contained error models forming a hierarchy.

 failure : FailureOutPort [*] {composite}

A failureOutPort represent a propagated Failure.

 externalFault : FaultInPort [*] {composite}

An external fault that the ErrorModelType may propagate or mask.

 errorBehaviorDescription : ErrorBehavior [1..*] {composite}

The description of failure logic of the target element.

Constraints
[1] An ErrorModelType without part shall have one errorBehaviorDescription.

Semantics
The ErrorModelType represents a specification of the faults and fault propagations of its target
element.

Both types and prototypes may be targets, and the following cases are relevant:

- One nominal type:

The ErrorModelType represents the identified nominal type wherever this nominal type is
instantiated.

- Several nominal types:

The ErrorModelType represents the identified nominal types individually, i.e. the same error model
applies to all nominal types and is reused.

- One nominal prototype:

The ErrorModelType represents the identified nominal prototype whenever its context, i.e. its top-
level composition is instantiated.

- Several nominal prototypes with instanceref:

The ErrorModelType represents the identified set of nominal prototypes (together) whenever their
context, i.e. their top-level composition, is instantiated.

The fault propagation of an errorModelType is defined by its contained parts, the
ErrorModelPrototypes and their connections. In case it contains both parts and an
errorBehaviorDescription, the errorBehaviorDescription shall be consistent with the parts.

file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType
file:///C:/Volvo/MAENAD/index.html%23InternalFaultPrototype
file:///C:/Volvo/MAENAD/index.html%23FaultFailurePropagationLink
file:///C:/Volvo/MAENAD/index.html%23ProcessFaultPrototype
file:///C:/Volvo/MAENAD/index.html%23ErrorModelPrototype
file:///C:/Volvo/MAENAD/index.html%23FailureOutPort
file:///C:/Volvo/MAENAD/index.html%23FaultInPort
file:///C:/Volvo/MAENAD/index.html%23ErrorBehavior

EAST-ADL Domain Model Specification version V2.1.12

156 (244)

FaultFailurePropagationLinks define valid propagation paths in the ErrorModelType. In case the
contained FaultInPorts and FailureOutPorts reference nominal ports, the connectivity of the
nominal model may serve as a pattern for connecting ports in the ErrorModelType.

The ErrorModelType contains internalFaults and externalFaults, representing faults that are either
propagated to externalFailures or masked, according to the definition of its fault propagation.

A processFault represents a flaw introduced during design, and may lead to any of the failures
represented by the ErrorModelType. A processFault therefore has a direct propagation to all
failures and cannot be masked.

18.2.6 FailureOutPort (from ErrorModel)

Generalizations

 FaultFailurePort (from ErrorModel)

Description
The FailureOutPort represents a propagation point for failures that propagate out from the
containing ErrorModelType.The EADatatype of the FailureOutPort defines the range of valid
failures.

Attributes
No additional attributes

Associations
No additional associations

Constraints
[1] The direction of the nominal port must be 'out'.

Semantics
The value range of a FailureOutPort represents failures that can propagate to FaultInPorts in other
ErrorModels. The value range is defined by the FailureOutPort's EADatatype.

If nominal ports, HWTargets or FunctionTargets are referenced, the failures of the FailureOutPort
correspond to data on these nominal ports.

18.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype»

Generalizations

 Anomaly (from ErrorModel)

 EAPort (from Elements)

Description
Abstract port for Faults and Failures.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 functionTarget : FunctionPort [*]

«instanceRef»

 hwTarget : HardwarePin [*]

«instanceRef»

file:///C:/Volvo/MAENAD/index.html%23FaultFailurePort
file:///C:/Volvo/MAENAD/index.html%23Anomaly
file:///C:/Volvo/MAENAD/index.html%23EAPort
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin

EAST-ADL Domain Model Specification version V2.1.12

157 (244)

Constraints
No additional constraints

Semantics
FaultFailurePort is abstract. Semantics is defined on its specializations.

18.2.8 FaultFailurePropagationLink (from ErrorModel)

Generalizations

 EAConnector (from Elements)

 EAElement (from Elements)

Description
The FaultFailurePropagationLink metaclass represents the links for the propagations of
faults/failures across system elements. In particular, it defines that one error model provides the
faults/failures that another error model receives.

A fault/failure link can only be applied to compatible ports, either for fault/failure delegation within
an error model or for fault/failure transmission across two error models. A
FaultFailurePropagationLink can only connect fault/failure ports that have compatible types.

Attributes

 immediatePropagation : Boolean = true [1]

Associations
No additional associations

Dependencies

 fromPort : FaultFailurePort [1]

«instanceRef»

 toPort : FaultFailurePort [1]

«instanceRef»

Constraints
[1] Only compatible fromPort-toPort pairs may be connected.

[2] Two fault/failure ports are compatible if the EADatatype of the fromPort represents a subset of
the Fault/Failure set represented by the toPort’s EADatatype.

Semantics
The FaultFailurePropagationLink defines a Failure propagation path, from the fromPort on one
error model to the toPort of another error model.

18.2.9 FaultInPort (from ErrorModel)

Generalizations

 FaultFailurePort (from ErrorModel)

Description
The FaultInPort represents a propagation point for faults that propagate to the containing
ErrorModelType. The EADatatype of the FaultInPort defines the range of valid failures.

Attributes
No additional attributes

Associations
No additional associations

file:///C:/Volvo/MAENAD/index.html%23EAConnector
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23FaultFailurePort
file:///C:/Volvo/MAENAD/index.html%23FaultFailurePort
file:///C:/Volvo/MAENAD/index.html%23FaultFailurePort

EAST-ADL Domain Model Specification version V2.1.12

158 (244)

Constraints
[1] The direction of the nominal port must be 'in'.

Semantics
The value range of a FaultInPort represents faults propagated from a FailureOutPort in another
ErrorModel. The value range is defined by the FaultInPort's EADatatype.

If nominal ports HWTarget or FunctionTarget are referenced, the faults on the FaultInPort
correspond to data on these nominal ports.

18.2.10 InternalFaultPrototype (from ErrorModel)

Generalizations

 Anomaly (from ErrorModel)

Description
The InternalFault metaclass represents the particular internal conditions of the target
component/system that are of particular concern for its fault/failure definition.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The system anomaly represented by an InternalFault, which when activated, can cause errors and
failures of the target element.

18.2.11 ProcessFaultPrototype (from ErrorModel)

Generalizations

 Anomaly (from ErrorModel)

Description
The ProcessFaultPrototype metaclass represents the anomalies that the target component/system
can have due to design or implementation flaws (e.g., incorrect requirements, buffer size
configuration, scheduling, etc.).

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
The ProcessFaultPrototype represents general internal anomalies of a component that are
introduced during design and implementation.

file:///C:/Volvo/MAENAD/index.html%23Anomaly
file:///C:/Volvo/MAENAD/index.html%23Anomaly

EAST-ADL Domain Model Specification version V2.1.12

159 (244)

19 SafetyConstraints

19.1 Overview

The SafetyConstraints package contains constructs for defining safety constraints.

Figure 26. Diagram for SafetyConstraints.

19.2 Element Descriptions

19.2.1 ASILKind (from SafetyConstraints) «enumeration»

Generalizations
None

Description
The ASILKind is an enumeration metaclass with enumeration literals indicating the level of safety
integrity in accordance with ISO26262.

Enumeration Literals

 ASIL_A

ASIL A, Lowest Safety Integrity Level.

 ASIL_B

ASIL B, second lowest Safety Integrity Level.

 ASIL_C

ASIL C, second highest Safety Integrity Level.

 ASIL_D

ASIL D, Highest Safety Integrity Level.

 QM

Quality Management only, no requirement according to ISO 26262.

EAST-ADL Domain Model Specification version V2.1.12

160 (244)

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics is defined at each enumeration literal and fully defined in the ISO26262 standard.

19.2.2 FaultFailure (from SafetyConstraints)

Generalizations

 TraceableSpecification (from Elements)

Description
The FaultFailure represents a certain fault or failure on its referenced Anomal(ies). The
faultFailureValue specifies the value of the Anomaly that corresponds to the condition represented
by the FaultFailure. Alternatively, a boolean expression over the referenced anomalies defines the
condition represented by the FaultFailure.

Attributes
No additional attributes

Associations

 faultFailureValue : EAValue [1] {composite}

The faultFailureValue defines the value that anomal(ies) should have or the expression that
the anomal(ies) should fulfill.

Dependencies

 anomaly : Anomaly [*]

«instanceRef»

Constraints
[1] faultFailureValue shall have the same datatype as the referenced Anomal(ies) or be of type
EABoolean.

Semantics
A FaultFailure represents a fault or failure on the referenced Anomal(ies). The Faultfailure
condition is satisfied when a) faultFailureValue is an EAValue and at least one of the referenced
anomal(ies) is equal to this value or b) when faultFailureValue is a boolean EAExpression and the
referenced anomal(ies) satisfies the expression, i.e. it evaluates to true.

19.2.3 QuantitativeSafetyConstraint (from SafetyConstraints)

Generalizations

 TraceableSpecification (from Elements)

Description
The QuantitativeSafetyConstraint metaclass represents the quantitative integrity constraints on a
fault or failure. Thus, the system has the same or better performance with respect to the
constrained fault or failure, and depending on the role this is either a requirement or a property.

Attributes

 failureRate : Float [1]

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23Anomaly
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

161 (244)

failureRate denotes the number of failures per unit time, i.e. the density of probability of
failure divided by probability of survival for a hardware element (ISO26262 definition). For
exponential failure distributions it is often denoted by lambda.

 repairRate : Float [1]

repairRate denotes the number of repairs per unit time. For exponential repair distributions
it is often denoted by mu.

Associations

 constrainedFaultFailure : FaultFailure [1..*]

A QuantitativeSafetyConstraint defines quantitative bounds on the constrainedFaultFailure
in terms of the failure and repair rates, failureRate and repairRate. The rates are
exponentially distributed (user defined attributes may be used to specify alternative
distributions and additional quantitative parameters).

Constraints
No additional constraints

Semantics
A QuantitativeSafetyConstraint provides information about the probabilistic estimates of target
faults/failures, further specified by the failureRate and repairRate attribute.

19.2.4 SafetyConstraint (from SafetyConstraints)

Generalizations

 TraceableSpecification (from Elements)

Description
The SafetyConstraint metaclass represents the qualitative integrity constraints on a fault or failure.
Thus, the system has the same or better performance with respect to the constrained fault or
failure, and depending on the role this is either a requirement or a property.

Attributes

 asilValue : ASILKind [1]

The ASIL level of the target fault or failure.

Associations

 constrainedFaultFailure : FaultFailure [1..*]

The constrained fault or failure.

Constraints
No additional constraints

Semantics
A SafetyConstraint defines qualitative bounds on the constrainedFaultFailure in terms of safety
integrity level, asilValue.

Depending on role, the SafetyConstraint may define a required or an actual safety integrity level.

file:///C:/Volvo/MAENAD/index.html%23FaultFailure
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23FaultFailure

EAST-ADL Domain Model Specification version V2.1.12

162 (244)

20 SafetyRequirement

20.1 Overview

The SafetyRequirement package contains constructs for organizing ISO 26262 safety
requirements.

Figure 27. Diagram for Safety Concepts.

20.2 Element Descriptions

20.2.1 FunctionalSafetyConcept (from SafetyRequirement)

Generalizations

 RequirementsHierarchy (from Requirements)

Description
FunctionalSafetyConcept represents the set of functional safety requirements that together fulfills
a SafetyGoal in accordance with ISO 26262.

To comply with the SafetyGoals, the FunctionalSafetyConcept specifies the basic safety
mechanisms and safety measures in the form of functional safety requirements.

Attributes
No additional attributes

Associations

 functionalSafetyRequirement : Requirement [*] {ordered}

Represents a functional safety requirement that describes the measures for complying with
the safety goals and the corresponding ASIL.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy
file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

163 (244)

Semantics
The collection of requirements in the FunctionalSafetyConcept defines the requirements
necessary to make the Item safe. The requirements are abstract and do not specify technical
details.

20.2.2 SafetyGoal (from SafetyRequirement)

Generalizations

 EAElement (from Elements)

Description
SafetyGoal represents the top-level safety requirement defined in ISO26262. Its purpose is to
define how to avoid its associated HazardousEvents, or reduce the risk associated with the
hazardous event to an acceptable level.

The SafetyGoal is defined through one or several associated requirement elements.

An ASIL shall be assigned to each SafetyGoal, to represent the integrity level at which the
SafetyGoal must be met.

Similar SafetyGoals can be combined into one SafetyGoal. If different ASILs are assigned to
similar SafetyGoals, the highest ASIL shall be assigned to the combined SafetyGoal.

For every SafetyGoal, a safe state should be defined, by referencing a specific mode. The safe
state is a system state to be maintained or to be reached when a potential source of its hazardous
event is detected.

Attributes

 hazardClassification : ASILKind [1]

Associations

 safeState : Mode [*]

For every SafetyGoal, a safe state should be defined, in order to declare a system state to
be maintained or to be reached when the failure is detected and so to allow a failure
mitigation action without any violation of the associated SafetyGoal.

 requirement : Requirement [1..*]

 derivedFrom : HazardousEvent [1..*]

The HazardousEvent which the SafetyGoal shall address.

Constraints
No additional constraints

Semantics
SafetyGoal represents a safety Goal according to ISO26262. Requirements define the SafetyGoal,
and HazardousEvents identify the responsibility of each SafetyGoal. HazardClassification defines
the integrity classification of the SafetyGoal, and safeStates may be defined through associated
Modes.

20.2.3 TechnicalSafetyConcept (from SafetyRequirement)

Generalizations

 RequirementsHierarchy (from Requirements)

Description
TechnicalSafetyConcept represents the set of technical safety requirements that together fulfills a
FunctionalSafetyConcept and SafetyGoal in accordance with ISO 26262.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23Requirement
file:///C:/Volvo/MAENAD/index.html%23HazardousEvent
file:///C:/Volvo/MAENAD/index.html%23RequirementsHierarchy

EAST-ADL Domain Model Specification version V2.1.12

164 (244)

These are derived from FunctionalSafetyConcepts i.e. TechnicalSafetyRequirements are derived
from FunctionalSafetyRequirements.

Attributes
No additional attributes

Associations

 technicalSafetyRequirement : Requirement [*] {ordered}

Constraints
No additional constraints

Semantics
The TechnicalSafetyConcept consists of the technical safety requirements and details the
functional safety concept considering the functional concept and the preliminary architectural
design. It corresponds to the Technical Safety Concept of ISO26262.

file:///C:/Volvo/MAENAD/index.html%23Requirement

EAST-ADL Domain Model Specification version V2.1.12

165 (244)

21 SafetyCase

21.1 Overview

Safety is a property of a system that is difficult to verify quantitatively since no clear measurement
method exists that can be applied during the development. Not even exhaustive testing is feasible,
as faults in electronics can have an intensity of 10^-9 faults/hour and still pose an unacceptable
risk. Hence, it is only when sufficient field data have been collected from a system used in a
particular context that it can be said to be safe enough. Nonetheless, safety must be addressed
and assessed during development, restricted to qualitative reasoning about the safety of a
product. A structured engineering method is thus needed to approach this problem. One such
method is the so called safety case, which came originally from the nuclear industry.

Figure 28.

21.2 Element Descriptions

21.2.1 Claim (from SafetyCase)

Generalizations

 TraceableSpecification (from Elements)

Description
Claim represents a statement, the truth of which needs to be confirmed.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

166 (244)

Claim has associations to the strategy for goal decomposition and to supported arguments. It also
holds associations to the evidences for the SafetyCase.

Attributes
No additional attributes

Associations

 goalDecompositionStrategy : Warrant [*]

Strategies can be used to add further detail to a goal decomposition.

 supportedArgument : Warrant [*]

Supported argument for the Claim.

 evidence : Ground [1..*]

An evidence provides the backing for stating that a requirement (Claim) has been meet.

 justification : Rationale [*] {composite}

Justification can be used wherever it is felt to be valuable to provide the rationale behind
the Claim.

 safetyRequirement : TraceableSpecification [*]

Safety requirements and objectives in the SystemModel.

Constraints
No additional constraints

Semantics
Goal-based development provides the claim what should be achieved.

Goal is what the argument must show to be true.

21.2.2 Ground (from SafetyCase)

Generalizations

 TraceableSpecification (from Elements)

Description
Claim is based on Grounds (evidences) - specific facts about a precise situation that clarify and
make good the Claim.

Ground represents statements that explain how the SafetyCase Ground clarifies and make good
the Claim.

Ground has associations to the entities that are the evidences in the SafetyCase.

Attributes
No additional attributes

Associations

 justification : Rationale [*] {composite}

Justification can be used wherever it is considered valuable to provide the rationale behind
the Ground.

 safetyEvidence : Identifiable [*]

Safety evidence in the SystemModel. May also refer to elements in the AUTOSAR model.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23Warrant
file:///C:/Volvo/MAENAD/index.html%23Warrant
file:///C:/Volvo/MAENAD/index.html%23Ground
file:///C:/Volvo/MAENAD/index.html%23Rationale
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Rationale
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

167 (244)

Semantics
Ground (evidence) is information that supports the Claim that the safety requirements and
objectives are met i.e. used as the basis of the safety argument.

Solution is evidence that the sub-goals have been met. This can be achieved by decomposing all
goal claims to a level where direct reference to evidences was considered possible.

The evidences address different aspects of the goal. It always has to be ensured that each of
them is defensible enough to confirm the underlying statement.

21.2.3 LifecycleStageKind (from SafetyCase) «enumeration»

Generalizations
None

Description
The SafetyCase should be initiated at the earliest possible stage in the safety program so that
hazards are identified and dealt with while the opportunities for their exclusion exist.

The LifecycleStageKind is an enumeration metaclass with enumeration literals indicating safety
case life cycle stage.

Enumeration Literals

 InterimSafetyCase

The interim safety case is situated after the first system design and tests

 OperationalSafetyCase

The operational safety case is prior to in-service use

 PreliminarySafetyCase

The preliminary safety case is started when development of the system is started.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The safety case is one incremental safety case, rather than several complete new ones. The
safety case lifecycle stage has the following meanings:

- The preliminary safety case is started when development of the system is started. After this
stage discussions with the customer can commence about possible safety issues (hazards).

- The interim safety case is situated after the first system design and tests.

- The operational safety case is prior to in-service use.

21.2.4 SafetyCase (from SafetyCase)

Generalizations

 TraceableSpecification (from Elements)

Description
SafetyCase represents a safety case that communicates a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a given context.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

168 (244)

Safety Cases are used in safety related systems, where failures can lead to catastrophic or at
least dangerous consequences.

Attributes

 context : String [1]

Description of how the SafetyCase Warrant (argument) relates to, and depends upon,
information from other viewpoints.

 stage : LifecycleStageKind [1]

Safety case life cycle stage (preliminary, interim or operational).

Associations

 safetyCase : SafetyCase [*] {composite}

Sub SafetyCase.

 warrant : Warrant [*] {composite}

Argumentation of the facts to the Claim in general ways.

 ground : Ground [1..*] {composite}

Explains how the SafetyCase Ground clarifies and make good the Claim.

 claim : Claim [1..*] {composite}

A statement the truth of which needs to be confirmed.

Constraints
No additional constraints

Semantics
The SafetyCase element is a container element for warrant, type and claim that together represent
evidence of safety for the system or item in its context.

21.2.5 Warrant (from SafetyCase)

Generalizations

 TraceableSpecification (from Elements)

Description
Warrant represents argumentation of the facts to the Claim in general ways.

The Warrant entity has associations with the decomposed goals and with the evidences for the
SafetyCase.

Attributes
No additional attributes

Associations

 evidence : Ground [*]

Explains how the SafetyCase Ground clarifies and justifies the Claim.

 decomposedGoal : Claim [*]

A statement which needs to be confirmed.

 justification : Rationale [*] {composite}

Justification can be used wherever it is felt to be valuable to provide the rationale behind
the Warrant.

file:///C:/Volvo/MAENAD/index.html%23SafetyCase
file:///C:/Volvo/MAENAD/index.html%23Warrant
file:///C:/Volvo/MAENAD/index.html%23Ground
file:///C:/Volvo/MAENAD/index.html%23Claim
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Ground
file:///C:/Volvo/MAENAD/index.html%23Claim
file:///C:/Volvo/MAENAD/index.html%23Rationale

EAST-ADL Domain Model Specification version V2.1.12

169 (244)

Constraints
No additional constraints

Semantics
The overall objective of an argument is to lead the evidence to the claim.

Arguments are actions of inferring a conclusion from premised propositions. An argument is
considered valid if the conclusion can be logically derived from its premises. An argument is
considered sound if it is valid and all premises are true.

A goal decomposition strategy breaks down a goal into a number of sub-goals. It is recommended
that the strategies are of specific form.

EAST-ADL Domain Model Specification version V2.1.12

170 (244)

Part VIII Generic Constraints

This part contains support for GenericConstraints, i.e. those that do not belong to the predefined
timing and safety constraints.

EAST-ADL Domain Model Specification version V2.1.12

171 (244)

22 GenericConstraints

22.1 Overview

The main concept in this package is GenericConstraint which denotes a property, requirement, or
a validation result for the identified element of the model. The kind of GenericConstraint is
described as one of the predefined GenericConstraintKind literals.

Figure 29. Diagram of GenericConstraint.

22.2 Element Descriptions

22.2.1 GenericConstraint (from GenericConstraints)

Generalizations

 TraceableSpecification (from Elements)

Description
The GenericConstraint denotes a property, requirement, or a validation result for the identified
element of the model. The kind of GenericConstraint is described as one of the
GenericConstraintKind literals.

Example: If the attribute genericConstraintType is cableLength, the value could be "5 meters"
(value of a numerical datatype with unit "meters").

Attributes

 kind : GenericConstraintKind [1]

The type of the GenericConstraint, see GenericConstraintKind.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

172 (244)

Associations

 mode : Mode [*]

The mode where this GenericConstraint is valid.

 value : EAValue [0..1] {composite}

The concrete value of the GenericConstraint according to the semantics of the
genericConstraintType.

 target : Identifiable [*]

The subject of the GenericConstraint.

Constraints
No additional constraints

Semantics
The GenericConstraint does not describe what is classically referred to as a "design" constraint
but has the role of a property, requirement, or a validation result. It is a requirement if this
GenericConstraint refines a Requirement (by the Refine relationship). The GenericConstraint is a
validation result if it realizes a VVActualOutcome, it is an intended validation result if it realizes a
VVIntendedOutcome, and in other cases it denotes a property.

22.2.2 GenericConstraintKind (from GenericConstraints) «enumeration»

Generalizations
None

Description
Enumeration for different type of constraints.

Enumeration Literals

 cableLength

The length of the cable. Recommended quantity is length.

 current

The electrical current of the target. Recommended quantity is Electric current.

 developmentCost

The overall development cost. Recommended quantity is time.

 functionAllocationDifferentHW

The referenced elements shall be allocated to different HW elements during design and
implementation.

 functionAllocationSameHW

The referenced elements shall be allocated to the same HW elements during design and
implementation.

 impedance

The internal impedance in Ohms to ground of the component as seen through a targetPin
or between a pair of targetPins. Recommended quantity is M L^2 t^-3 I^-2.

 insulation

The insulation resistance of the target.

 memory

file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

173 (244)

 nonVolatileMemory

The size in Bytes of the Node's Non-Volatile memory (ROM, NRAM, EPROM, etc.).

 other

 pieceCost

The costs per piece.

 powerConsumption

The power consumption of the unit. Recommended quantity is power M L^2 t^-3.

 powerSupplyIndependent

The targets (the DesignFunctions) shall be allocated to Nodes with independent power
supplies.

This constraint needs to be implemented by appropriate FunctionAllocations in the
DesignLevel.

 realizationDifferent

The referenced elements shall be realized by different functional, logical or software
element during design and implementation.

 realizationSame

The referenced elements shall be realized by the same functional, logical or software
element during design and implementation.

 spaceRedundancy

The targets are replicated for redundancy, genericConstraintValue times.

 standard

The standard (e.g., ISO26262) that is the basis for development of the target.

 timeRedundancy

The targets are executed with time redundancy, genericConstraintValue times.

 utilization

 volatileMemory

The size in Bytes of the Node's Volatile memory (RAM)

 voltage

The voltage between the targets. Recommended quantity is voltage M L^2 t^-3 I^-1.

 weight

The physical weight of the unit. Recommended quantity is mass.

Associations
No additional associations

Constraints
No additional constraints

Semantics
The semantics is defined on each literal.

EAST-ADL Domain Model Specification version V2.1.12

174 (244)

22.2.3 GenericConstraintSet (from GenericConstraints)

Generalizations

 Context (from Elements)

Description
The collection of generic constraints. This collection can be used across the EAST-ADL
abstraction levels.

Attributes
No additional attributes

Associations

 genericConstraint : GenericConstraint [*] {composite}

Constraints
No additional constraints

Semantics
GenericConstraintSet is a container element for GenericConstraints and has no specific
semantics.

22.2.4 TakeRateConstraint (from GenericConstraints)

Generalizations

 GenericConstraint (from GenericConstraints)

Description
The TakeRateConstraint defines the ratio between the number of configurations that includes the
target elements and the number of configurations that include the source. If several source
elements are referenced, it would be the configurations in which all these exist.

TakeRateConstraint complements configuration decisions, as the latter defines the rules for actual
configuration. TakeRateConstraint defines expected rates of configurations and the set of
constraints should be consistent with the configuration decisions. Also, the set of
TakeRateConstraints shall be consistent among themselves.

Attributes

 takeRate : Float [1]

The rate of target compared with source configurations.

Associations

 source : Identifiable [*]

The elements that are compared with the elements identified by target (see
GenericConstraint).

Constraints
[1] The cardinality of target is > 0

Semantics
The TakeRate constraint defines frequency of configurations. Let sourceamount and targetamount
be the number of system configurations where all source and target elements, respectively, are
included. takeRate= targetamount/sourceamount. If no source is associated,
takeRate=targetamount.

file:///C:/Volvo/MAENAD/index.html%23Context
file:///C:/Volvo/MAENAD/index.html%23GenericConstraint
file:///C:/Volvo/MAENAD/index.html%23GenericConstraint
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

175 (244)

Part IX Infrastructure

This part contains the EAST-ADL infrastructure which is Datatypes, Elements and User attributes.

EAST-ADL Domain Model Specification version V2.1.12

176 (244)

23 Datatypes

23.1 Overview

The Datatypes subpackage of EAST-ADL defines EAST-ADL general-purpose datatypes that may
be used to type structural constructs in several different modeling diagrams.

The purpose of the metaclasses in the Datatypes subpackage is to specify the concepts for the
specific domain.

Figure 30. Diagram for Datatypes.

23.2 Element Descriptions

23.2.1 ArrayDatatype (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
Specification of an array of the typing EADatatype. All elements of the ArrayDatatype have the
same datatype.

Attributes

 maxLength : Integer [0..1]

The maximum number of values in this array. Unbounded if not provided.

 minLength : Integer [0..1]

file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

177 (244)

The minimum number of values in this array.

Associations

 elementType : EADatatype [1]

The type of all elements in this array.

Constraints
No additional constraints

Semantics
ArrayDatatype is a datatype for an array of datatypes of the same type.

23.2.2 CompositeDatatype (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
A CompositeDatatype represents a non-scalar datatype. Take as an example a
CompositeDatatype "MyCountries" that can refer, e.g., to an Enumeration "CountryEnumeration"
{USA, Canada, Japan, EU} via two EADatatypePrototypes (record variables): FirstCountry and
SecondCountry. Then an attribute typed by this CompositeDatatype "MyCountries" may have a
value like: (EU (identified as FirstCountry), Japan (identified as SecondCountry)).

Attributes
No additional attributes

Associations

 datatypePrototype : EADatatypePrototype [1..*] {ordered} {composite}

The record variable owned by the CompositeDatatype.

Constraints
No additional constraints

Semantics
A CompositeDatatype represents a non-scalar datatype. The contained datatypePrototypes act as
record variables to identify the ordered datatype instances of the tuple (the CompositeDatatype).

23.2.3 EABoolean (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
A EABoolean value denotes a logical condition that is either 'true' or 'false'.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
EABoolean is the primitive type that holds two literals: true, false.

file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EADatatypePrototype
file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

178 (244)

23.2.4 EADatatype (from Datatypes) {abstract} «atpType»

Generalizations

 TraceableSpecification (from Elements)

Description
The EADatatype is a metaclass, which signifies a type whose instances are identified only by their
value. The EADatatype metaclass represents the description of the value set for some variable,
parameter etc. without a description of how these possible values are represented at
implementation level. The implementation representation is defined at implementation level by the
AUTOSAR concept PrimitiveTypeWithSemantics, and the implemented datatype shall be
associated with a Realization relationship. The realizing datatype must match the EADatatype
regarding range, resolution, unit, and dimension.

Attributes
No additional attributes

Associations
No additional associations

Constraints
[1] In the case of an AR implementation, an EADatatype is realized generally by
PrimitiveTypeWithSemantics, which has to be consistent w.r.t. range, resolution, etc.

Semantics
EADatatype metaclass is a special kind of classifier, similar to a class. It differs from the class in
that instances of a data type are identified only by their value.

23.2.5 EADatatypePrototype (from Datatypes) «atpPrototype»

Generalizations

 EAElement (from Elements)

Description
The EADatatypePrototype represents a typed variable. An example is a composite datatype
ColorValue with parts R, G, and B of type integer. ColorValue would contain three prototypes only
to be able to reference the record parts by name.

Attributes
No additional attributes

Associations

 type : EADatatype [1]

«isOfType»

The type of the EADatatypePrototype.

Constraints
No additional constraints

Semantics
The EADatatypePrototype represents a typed variable. It acts as an appearance of a datatype.

23.2.6 EANumerical (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

179 (244)

Description
Datatype for numerical values.

Attributes

 max : Numerical [0..1]

The maximal value of the range.

 min : Numerical [0..1]

The minimum value of the range.

Associations

 unit : Unit [0..1]

The unit of data.

Example: For temperature the unit may be "degree Celsius".

Constraints
No additional constraints

Semantics
EANumerical has attributes for modeling of the allowed range.

23.2.7 EAString (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
A string is a sequence of characters in some suitable character set used to display information
about the model. Character sets may include non-Roman alphabets and characters. An instance
of EAString defines a piece of text. The semantics of the string itself depends on its purpose. It
can be a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
EAString is the primitive type that defines a sequence of characters in some suitable character set
used to display information.

23.2.8 Enumeration (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
An enumeration is a datatype whose values are enumerated in the model as enumeration literals.
Enumeration is a kind of datatype, whose instances may be any of a number of user-defined
enumeration literals.

file:///C:/Volvo/MAENAD/index.html%23Unit
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

180 (244)

Attributes

 isMultiValued : Boolean [1]

This boolean attribute is true, if multiple enumeration values can be selected. It is false, if
only one enumeration value is allowed to be selected.

Associations

 literal : EnumerationLiteral [2..*] {ordered} {composite}

The literal (value) of the enumeration.

Constraints
No additional constraints

Semantics
Enumeration is a kind of datatype, whose instances may be any number > 1 of user-defined
enumeration literals. Enumerations contain at least two literals, otherwise it would be a constant.
The contained literals need to be ordered.

23.2.9 EnumerationLiteral (from Datatypes)

Generalizations

 EAElement (from Elements)

Description
An enumeration literal is a user-defined data value for an enumeration.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.
An EnumerationLiteral has a name (inherited from EAElement) that can be used to identify it within
its Enumeration datatype. The EnumerationLiteral name is scoped and must therefore be unique
within its Enumeration. The run-time values corresponding to EnumerationLiterals can be
compared for equality.

23.2.10 Quantity (from Datatypes)

Generalizations

 EAPackageableElement (from Elements)

Description
A Quantity describes a physical dimension by exponents of the available attributes.

Some examples of Quantity are:

name = "Length" and lengthExp = "1"

name = "Angle" and all attribues = 0, i.e. angle is without dimension.

name = "Acceleration" and lengthExp = 1 and timeExp =-2.

Attributes

 amountOfSubstanceExp : Integer = 0 [1]

file:///C:/Volvo/MAENAD/index.html%23EnumerationLiteral
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement

EAST-ADL Domain Model Specification version V2.1.12

181 (244)

 electricCurrentExp : Integer = 0 [1]

 lengthExp : Integer = 0 [1]

 luminousIntensityExp : Integer = 0 [1]

 massExp : Integer = 0 [1]

 thermodynamicTemperatureExp : Integer = 0 [1]

 timeExp : Integer = 0 [1]

Associations
No additional associations

Constraints
No additional constraints

Semantics
The Quantity describes a physical dimension for use in numerical datatypes and expressions to
facilitate dimension consistency and control.

23.2.11 RangeableValueType (from Datatypes)

Generalizations

 EADatatype (from Datatypes)

Description
The RangeableValueType is a specific datatype applicable for numerical datatypes. It describes
the accuracy, resolution, and the significant digits of the baseRangeable datatype.

Attributes

 accuracy : Float [1]

The accuracy of the data (e.g., the FunctionFlowports input or output).

Example: An accuracy of 0.5 of the temperature means a communicated value of 19
represents an actual temperature of 19 +/- 0.5 degrees.

 resolution : Float [1]

The resolution of the data expressed as the size of the minimum difference between data
values.

Example: A resolution of 0.1 means that temperature may be represented in increments of
0.1 degree.

 significantDigits : Integer [0..1]

The number of significant digits, e.g., for the speed case: if the speed is a one digit number
(e.g., 5 km/h), then this digit is significant, if the speed is a two digits number (e.g., 15
km/h), then the first digit is significant (here: 1), if the speed is a three digits number (e.g.,
215 km/h), then the first two digits are significant (here: 21). Significant means here, that
the respective digits are reliable.

Associations

 baseRangeable : EANumerical [1]

The datatype with additional attributes specified by this concept.

Constraints
No additional constraints

file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EANumerical

EAST-ADL Domain Model Specification version V2.1.12

182 (244)

Semantics
The RangeableValueType adds the ability to describe the accuracy, resolution, and the significant
digits of the baseRangeable datatype.

23.2.12 Unit (from Datatypes)

Generalizations

 EAPackageableElement (from Elements)

Description
A Unit describes a unit used for numerical values of a datatype. It may relate to another unit to
enable conversions. It may also reference a quantity to give a dimension of the unit.

As a unit conversion example:

The Unit with name Second has the factor 1000, and the reference Millisecond, i.e.:

second = 1000 * millisecond

Moreover the Unit may be given a symbol and an offset, for example:

The Unit Fahrenheit with factor 1.8 and offset 32 gives with the reference to Celsius the definition
of Fahrenheit:

F = C*9/5 + 32

Attributes

 factor : Float [1]

 offset : Float [1]

 symbol : String [1]

Associations

 quantity : Quantity [0..1]

The (physical) quantity, e.g., "Speed", "Temperature".

 reference : Unit [0..1]

Constraints
No additional constraints

Semantics
Unit descibes the unit of typed numerical values.

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23Quantity
file:///C:/Volvo/MAENAD/index.html%23Unit

EAST-ADL Domain Model Specification version V2.1.12

183 (244)

24 Values

24.1 Overview

Figure 31.

24.2 Element Descriptions

24.2.1 EAArrayValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to hold the values in an array.

Attributes
No additional attributes

Associations

 value : EAValue [*] {ordered} {composite}

The values in this array, each is typed by the same EADatatype as the type of the
EAArrayDatatype.

Constraints
[1] Shall be typed by an ArrayDatatype.

Semantics
-

24.2.2 EABooleanValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to model a boolean value.

file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue

EAST-ADL Domain Model Specification version V2.1.12

184 (244)

Attributes

 value : Boolean [1]

Associations
No additional associations

Constraints
[1] Shall be typed by an EABoolean.

Semantics
The semantics of this value is defined by the element typed by the typing EABoolean.

24.2.3 EACompositeValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to model values in a record.

Attributes
No additional attributes

Associations

 value : EAValue [1..*] {ordered} {composite}

The ordered set of values, each typed by the same EADatatype as the corresponding
EADatatypePrototype in the CompositeDatatype.

Constraints
[1] Shall be typed by an CompositeDatatype.

[2] The values in this EACompositeValue shall be typed and ordered in the same way as the
EADatatypePrototypes in the typing CompositeDatatype.

Semantics
The semantics of this value is defined by the element typed by the typing CompositeDatatype.

24.2.4 EAEnumerationValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to model a value for an Enumeration or several values in a multivalued
EnumerationValueType.

Attributes
No additional attributes

Associations

 value : EnumerationLiteral [1..*]

The enumeration value.

Constraints
[1] Shall be typed by an Enumeration or an EnumerationValueType.

Semantics
The semantics of this value is defined by the element typed by the typing Enumeration or the
semantics defined in the EnumerationValueType.

file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EnumerationLiteral

EAST-ADL Domain Model Specification version V2.1.12

185 (244)

24.2.5 EAExpression (from Values) «atpMixedString»

Generalizations

 EAValue (from Values)

Description
The mixed string EAExpression allow for modeling of expressions with references to elements in
the model. Specializations within the metamodel define their syntax and the referred metaclasses
used in the expressions.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Used for modeling of expressions with references to model elements. Different typing of the
expression is possible, if e.g. typed by an EABooleanDatatype the evaluated expression results in
a boolean value.

24.2.6 EANumericalValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to model a numerical value.

Attributes

 value : Numerical [1]

Associations
No additional associations

Constraints
[1] Shall be typed by an EANumerical or a RangeableValueType.

Semantics
The semantics of this value is defined by the element typed by the type EADatatype.

24.2.7 EAStringValue (from Values)

Generalizations

 EAValue (from Values)

Description
Used to model a string value.

Attributes

 value : String [1]

Associations
No additional associations

file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue

EAST-ADL Domain Model Specification version V2.1.12

186 (244)

Constraints
[1] Shall be typed by an EAString.

Semantics
The semantics of this value is defined by the element typed by the typing EAString.

24.2.8 EAValue (from Values) {abstract} «atpPrototype»

Generalizations
None

Description
EAValue is an abstract element with concrete elements used to store typed values in the model.
Some of the specializations correspond to UML2 literal specifications EAValue corresponds to
UML2 Value Specification which is a typed element.

The EAValue does not have a name and is contained where a value is modeled.

Attributes
No additional attributes

Associations

 type : EADatatype [1]

«isOfType»

The type of the value.

Constraints
No additional constraints

Semantics
The semantics of this element is defined by the element typed by the corresponding EADatatype.

file:///C:/Volvo/MAENAD/index.html%23EADatatype

EAST-ADL Domain Model Specification version V2.1.12

187 (244)

25 Elements

25.1 Overview

The Element subpackage of the Infrastructure package of the EAST-ADL specifies the most basic
abstract structural constructs in EAST-ADL.

Figure 32. Diagram for RelationshipModeling.

EAST-ADL Domain Model Specification version V2.1.12

188 (244)

Figure 33. Diagram for Elements.

Figure 34. Diagram for abstract structure.

25.2 Element Descriptions

25.2.1 Comment (from Elements)

Generalizations
None

Description
Comment represents a textual annotation.

Attributes

 body : String [1]

Specifies a string that is the comment.

EAST-ADL Domain Model Specification version V2.1.12

189 (244)

Associations
No additional associations

Constraints
No additional constraints

Semantics
Comment represents a textual annotation that applies to the containing or associated element.

25.2.2 Context (from Elements) {abstract}

Generalizations

 EAPackageableElement (from Elements)

Description
Context represents a simple and practical way to allocate TraceableSpecifications to a specific
EAST-ADL model context, and to let this specific model context own Relationships.

Attributes
No additional attributes

Associations

 ownedRelationship : Relationship [*] {composite}

Relationship(s) owned by this context.

 traceableSpecification : TraceableSpecification [*]

Traceable specification(s) identified by this context.

Constraints
No additional constraints

Semantics
See Relationship and TraceableSpecification.

25.2.3 EAConnector (from Elements) {abstract}

Generalizations
None

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

25.2.4 EAElement (from Elements) {abstract}

Generalizations

 Identifiable (from Elements)

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Identifiable

EAST-ADL Domain Model Specification version V2.1.12

190 (244)

Description
The EAElement is an abstract metaclass that represents an arbitrary named entity in the domain
model. It specializes AUTOSAR Identifiable which has the shortName attribute used for
identification of the element within the namespace in which it is defined.

The abbreviation EA in the name of this metaclass is short for EAST-ADL.

Attributes

 name : String [0..1]

Optional descriptive name of the EAElement, this name does not have the length
restrictions as found for the AUTOSAR Identfiable shortName.

Associations

 ownedComment : Comment [*] {composite}

Comment owned by this EAElement.

Constraints
No additional constraints

Semantics
Also the EAElement can be used to extend the EAST-ADL approach to other languages and
standards by adding a generalize relation from the respective (non EAST-ADL) element to the
EAElement.

25.2.5 EAPackage (from Elements)

Generalizations

 EAElement (from Elements)

Description
Used for organization of the packageable elements in the model.

Attributes
No additional attributes

Associations

 element : EAPackageableElement [*] {composite}

«splitable»

Contained packageable elements.

 subPackage : EAPackage [*] {composite}

«splitable»

Contained packages.

Constraints
No additional constraints

Semantics
EAPackages can be organized hierarchically, where each level may contain a number of
EAPackageableElements.

25.2.6 EAPackageableElement (from Elements) {abstract}

Generalizations

 EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23Comment
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23EAPackage
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

191 (244)

Description
Elements that are packageable may be directly contained in a package.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Elements specializing EAPackageableElement can be created directly within an EAPackage.

25.2.7 EAPort (from Elements) {abstract}

Generalizations
None

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

25.2.8 EAPrototype (from Elements) {abstract}

Generalizations
None

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

25.2.9 EAType (from Elements) {abstract}

Generalizations
None

Attributes
No additional attributes

Associations
No additional associations

EAST-ADL Domain Model Specification version V2.1.12

192 (244)

Constraints
No additional constraints

Semantics
-

25.2.10 EAXML (from Elements)

Generalizations
None

Description
The root element of an exchanged XML file which contains an EAST-ADL model.

Attributes
No additional attributes

Associations

 topLevelPackage : EAPackage [*] {composite}

«splitable»

Contained top level packages.

Constraints
No additional constraints

Semantics
EAXML represents the root element of an EAST-ADL XML file.

25.2.11 Identifiable (from Elements) {abstract}

Generalizations

 Referrable (from Elements)

Description
This abstract element adds a UUID attribute to the Referrable element which is specialized.

Attributes

 category : Identifier [0..1]

This element assigns a category to the parent element. The category is intended to
specialize the usage and/or the content identifiable object. Such a specialization may also
impose particular semantic constraints on the entire substructure (not only the identifiable
itself).

 uuid : String [0..1]

The purpose of this attribute is to provide a globally unique identifier for an instance of a
metaclass. The values of this attribute should be globally unique strings prefixed by the
type of identifier. For example, to include a

DCE UUID as defined by The Open Group, the UUID would be preceded by "DCE:". The
values of this attribute may be used to support merging of different models.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined by
the Open Group (was Open Software Foundation). This standard is widely used, including
by Microsoft for COM (GUIDs) and by many companies for DCE, which is based on
CORBA. The method for generating these 128-bit IDs is published in the standard and the
effectiveness and uniqueness of the IDs is not in practice disputed.

file:///C:/Volvo/MAENAD/index.html%23EAPackage
file:///C:/Volvo/MAENAD/index.html%23Referrable

EAST-ADL Domain Model Specification version V2.1.12

193 (244)

If the id namespace is omitted, DCE is assumed.

An example is "DCE:2fac1234-31f8-11b4-a222-08002b34c003".

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

25.2.12 Rationale (from Elements)

Generalizations

 Comment (from Elements)

Description
Rationale represents a justification to any model element.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
Rationale represents a justification to any model element.

25.2.13 Realization (from Elements)

Generalizations

 Relationship (from Elements)

Description
The Realization is a relationship which relates two or more elements across boundaries of the
EAST-ADL abstraction levels.

It identifies an element that serves as a specification within this realization relationship and on the
other side it identifies an element that is supposed to realize this specification on a lower
abstraction level or an implementation.

Attributes
No additional attributes

Associations
No additional associations

Dependencies

 realizedBy : Identifiable [*]

«instanceRef»

 realized : EAElement [1..*]

«instanceRef»

file:///C:/Volvo/MAENAD/index.html%23Comment
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

194 (244)

Constraints
[1] The realizedBy elements shall be on a lower abstraction level than the realized relements.

[2] The realizedBy or realized elements shall be structural or behavioral.

Semantics
The Realization is a relationship which identifies one or several abstract elements that are realized
by one or several concrete elements. The realizedBy elements together represents a realization of
the group of realized elements and is collectively responsible for meeting the specification of the
realized elements, including (derivations of) its requirements.

25.2.14 Referrable (from Elements) {abstract}

Generalizations
None

Description
This abstract element has the shortName attribute which is used for references of elements in the
model in combination with the shortName of the elements parents.

Attributes

 shortName : Identifier [1]

This specifies an identifying shortName for the object. It needs to be unique within its
context and is intended for humans but even more for technical reference.

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

25.2.15 Relationship (from Elements) {abstract}

Generalizations

 EAElement (from Elements)

Description
The Relationship is an abstract metaclass which represents a relationship between arbitrary
elements.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
In many cases, Contexts such as functions and sensors need to have requirements and other
specification elements allocated to them. In other cases, the relationship between an element and
the related specification element is specific for a certain Context: for example a Requirement on a
sensor is only applicable in certain hardware architectures. These relationships are modeled by
concrete specializations of Relationship.

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

195 (244)

See Context and TraceableSpecification.

25.2.16 TraceableSpecification (from Elements) {abstract}

Generalizations

 EAPackageableElement (from Elements)

Description
The TraceableSpecification is an abstract metaclass which is used to allow its specializations to be
allocated to a Context.

Attributes

 text : String [0..1]

An optional description attribute that provides textual representation, or a reference to the
textual representation, of the Traceable Specification in a specific formalism.

Associations
No additional associations

Constraints
No additional constraints

Semantics
TraceableSpecification is specialized by requirements, test cases and other specifications, that
can be allocated to a Context, for example to a sensor or to an entire HW architecture.

See Context and Relationship.

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement

EAST-ADL Domain Model Specification version V2.1.12

196 (244)

26 UserAttributes

26.1 Overview

User attributes in EAST-ADL are primarily intended to provide a mechanism for augmenting the
elements of an EAST-ADL model with customized meta-information. All instances of metaclass
Identifiable can have user attributes attached to them. The scope and structuring of this meta-
information can be defined on a per-project basis by defining user attributes for certain types of
EAST-ADL elements with UserElementTypes and UserAttributeDefinitions.

Since EAST-ADL Requirements are, in their most general form, simple objects with all information
contained in user-customized, project-specific attributes, the concept of user attributes is also
suitable for defining those attributes of requirements. In that sense, basic Requirements in EAST-
ADL can be seen as "empty" elements which only provide a node to which user attributes can be
attached in order to supply the Requirement with all necessary information, including its main
textual description. However, in the case when the Requirement is the context in which the
available user attributes are defined, the containing RequirementsModel of the Requirements is
the point where user element types are stored (c.f. association "requirementType" of
RequirementsModel) and these are only applicable within this container. In this use case,
UserElementType corresponds to ReqIF's SpecType.

The role of user attributes within the overall EAST-ADL is thus twofold: they (1) provide a means to
customize the language to specific company and project needs and (2) constitute an important
part of the requirements support of the language.

User attribute values are characterized by user attribute definitions contained in
UserElementTypes. The latter are identified by a key attribute. Whenever interoperability with third
parties is required, an internet domain naming scheme should be used in order to produce
universally unique keys, similar to package names in the Java programming language. For
example, a company with a home page URL of "www.example.com" could use the key
"com.example.MyPort" for a user element type representing a custom type of port. For more
details refer to the documentation of attribute key in metaclass UserElementType.

In order to attach a user attribute value to an instance of a subclass of Identifiable (e.g.
DesignFunctionType "WiperSystem") a UserAttributedElement is created that points to this
instance (i.e. instance "WiperSystem") via association attributedElement and contains the actual
value as an instance of metaclass EAValue. In addition, the UserAttributedElement has to point to
a UserElementType containing an appropriate UserAttributeDefinition in order to identify the user
attribute, i.e. specify the meaning of the value and its type. For more details, refer to the
documentation of UserAttributedElement.

User attributes in EAST-ADL serve a similar purpose to stereotypes in UML2 but are intended as a
more light-weight and simpler mechanism, especially with respect to tool implementation.

EAST-ADL Domain Model Specification version V2.1.12

197 (244)

Figure 35. Diagram for User Attributes.

26.2 Element Descriptions

26.2.1 UserAttributeDefinition (from UserAttributes)

Generalizations

 EAPackageableElement (from Elements)

Description
UserAttributeDefinition defines a certain user attribute.

The name of a UserAttributeDefinition should be used in editing tools as a label for the input field
representing the user attribute and its description should be presented to the user to explain the
meaning of this user attribute.

To identify a user attribute in a universally unique way, its short name is appended to the key of
the containing UserElementType after appending a "." character (dot) as a separator. For
example, if a UserAttributeDefinition with short name "MyStatus" is contained in a
UserElementType with key "com.myCompany.myDepartment.myProject.MyPort", then the user
attribute represented by this UserAttributeDefinition has the key
"com.myCompany.myDepartment.myProject.MyPort.MyStatus".

Attributes
No additional attributes

Associations

 type : EADatatype [1]

The type of the user attribute. This type defines the set of legal values for the given user
attribute.

 defaultValue : EAValue [0..1] {composite}

Optional default value of the UserAttributeDefinition. The EAValue shall be typed by the
same EADatatype as the UserAttributeDefinition.

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EAValue

EAST-ADL Domain Model Specification version V2.1.12

198 (244)

Constraints
No additional constraints

Semantics
UserAttributeDefinition defines a user defined attribute.

26.2.2 UserAttributedElement (from UserAttributes)

Generalizations

 EAPackageableElement (from Elements)

Description
UserAttributedElement is used to attach user attribute values to any EAST-ADL or AUTOSAR
element, i.e. all instances of all subclasses of Identifiable. What user attributes a certain element
should be supplied with can be defined beforehand with UserElementTypes.

According to a common EAST-ADL meta-modeling pattern, the meta-classes that are attributable,
i.e. to which user attributes may be attached, do not inherit from meta-class
UserAttributedElement but instead UserAttributedElement points to these meta-classes via
association "attributedElement" (for example, to allow attaching user attributes to AUTOSAR
Identifiable that cannot inherit from EAST-ADL infrastructure meta-classes).

The actual values are given as a contained instance of EAValue and are provided with a definition
through the UserAttributeDefinitions in the UserElementType. If more than one value is contained,
then the same number of UserElementTypes/UserAttributeDefinitions must be referenced and the
order of values and definitions must be consistent (see constraint no. 2 below).

Example: let us assume that a DesignFunctionType "WiperSystem" should be provided with the
value "OK" for a user attribute "Status". This is achieved by creating an instance of
UserAttributedElement pointing via association "attributedElement" to instance "WiperSystem",
pointing via instance "uaType" to the UserElementType with a UserAttributeDefinition "Status" and
containing via containment association "uaValue" an EAStringValue "OK".

Attributes
No additional attributes

Associations

 attributedElement : Identifiable [1]

The element to which one or more user attribute values are attached.

 uaValue : EAValue [*] {ordered} {composite}

An ordered set of values attached to the element given by association "attributedElement".
These values must conform in number, order and datatype to the user attribute definitions
of the UserElementTypes given by association "uaType" (in depth-first order).

 uaType : UserElementType [*] {ordered}

The custom type(s) of this element.

Constraints
[1] The associations "uaValue" and the uaDefinitions of all "uaType"s must refer to the same
number of elements.

[2] The order of associations "uaValue" and "uaType" / "uaDefinition" must be consistent, i.e. the
n-th EAValue must correspond to the n-th UserAttributeDefinition when listing all
UserElementTypes' definitions in depth-first order.

Semantics
UserAttributedElement can be annotated with user attributes.

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23Identifiable
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23UserElementType

EAST-ADL Domain Model Specification version V2.1.12

199 (244)

26.2.3 UserElementType (from UserAttributes)

Generalizations

 EAPackageableElement (from Elements)

Description
UserElementType defines a certain set of user attributes, i.e. it states that all Identifiables of a
certain kind (c.f. the validFor attribute) may be provided with a user attribute value of some
datatype. For example, it can be specified that all AnalysisFunctionPrototypes may be amended
with an attribute "Status".

The name of a UserElementType should be used in editing tools as a label for the input field
representing the user attribute and its description should be presented to the user to explain the
meaning of this user attribute.

Attributes

 key : String [1]

The globally unique identifier of the user element type. Any string may be used as key as
long as it is globally unique.

However, there is a recommended procedure for building globally unique keys for user
attributes, similar to package naming conventions in the Java programming language:

(1) use an internet domain name which is sufficiently specific so that you have control over
who will use it for user attribute key generation (e.g. "myDepartment.myCompany.com")

(2) reverse it as in Java package names (e.g. "com.myCompany.myDepartment")

(3) optionally append additional, dot-separated names for the specific context in which the
user attribute is to be used (e.g. "myProject" which results in
"com.myCompany.myDepartment.myProject")

(4) add a last segment that names the user element type and is sufficiently descriptive to
explain its purpose (e.g. "MyPort").

In this example, the key of our status attribute would be
"com.myCompany.myDepartment.myProject.MyPort".

In general, the last segment of the key, i.e. everything following the last dot, should be
sufficient to identify the attribute in its usual, most specific context of use. Therefore,
implementations may use this last segment as an abbreviated name of the user attribute,
e.g. for presenting it in a GUI. But note that the name of the UserElementType should
usually be used (if defined).

 validFor : String [0..1]

Comma-separated list of metaclass names this user element type is applicable to. If
undefined, then this type is applicable to all subclasses of metaclass Identifiable. White-
space may appear before and after metaclass names and commas.

Example: If UserElementType 'MyFunction' has its validFor attribute set to
"FunctionalDevice, LocalDeviceManager", then the contained UserAttributeDefinitions are
only applicable to functional devices and local device managers, i.e. only instances of
FunctionalDevice and LocalDeviceManager may be adorned with the 'MyFunction' user
element type.

Associations

 uaDefinition : UserAttributeDefinition [*] {ordered} {composite}

The definitions of user attributes for this UserElementType.

file:///C:/Volvo/MAENAD/index.html%23EAPackageableElement
file:///C:/Volvo/MAENAD/index.html%23UserAttributeDefinition

EAST-ADL Domain Model Specification version V2.1.12

200 (244)

Constraints
[1] The short names of all UserAttributeDefinitions (i.e. value of attribute "shortName" in
UserAttributeDefinition, which is inherited from meta-class Referrable) referred to by association
"uaDefinition" must be unique within this UserElementType. In other words, no two
UserAttributeDefinitions referred to by association "uaDefinition" must have the same short name.

Semantics
UserElementType represents a user defined type of the specified EAST-ADL or AUTOSAR
metaclass.

EAST-ADL Domain Model Specification version V2.1.12

201 (244)

Part X Annexes

This part contains the EAST-ADL Annexes. The first annex is about notation followed by element
packages that are preliminary and subject to further refinement before inclusion in the main
language.

EAST-ADL Domain Model Specification version V2.1.12

202 (244)

27 Annex A: Notation

This annex lists the elements with defined notations to be used when the element is shown in a
diagram. For those elements that are not listed here the general notation is a solid-outline
rectangle with the metaclass name at the top right. The rectangle contains the user defined name
of the element.

 Actuator (from HardwareModeling)

Actuator is shown as a solid-outline rectangle with double vertical borders. The rectangle contains
the name, and its ports or port groups on the perimeter.

 AnalysisLevel (from SystemModeling)

The Analysis Architecture is shown as a solid-outline rectangle containing the name, with its ports
or port groups on the perimeter. Contained entities may be shown with their connectors (White-
box view).

 ArrayDatatype (from Datatypes)

The datatype ArrayDatatype is denoted using the rectangle symbol with keyword «Datatype
ArrayDatatype».

 CommunicationHardwarePin (from HardwareModeling)

CommunicationHardwarePin is shown as a solid square with a C inside. Its name may appear
outside the square.

 CompositeDatatype (from Datatypes)

The datatype CompositeDatatype is denoted using the rectangle symbol with keyword «Datatype
CompositeDatatype».

 DeriveRequirement (from Requirements)

A DeriveRequirement relationship is shown as a dashed arrow between two Requirements. The
Requirement at the tail of the arrow (the derived Requirement) depends on the Requirement at the
arrowhead (the Requirement derived from).

 DesignLevel (from SystemModeling)

The DesignLevel is shown as a solid-outline rectangle containing the name, with its ports or port
groups on the perimeter. Contained entities may be shown with their connectors and allocations
(White-box view).

 EABoolean (from Datatypes)

The datatype EABoolean is denoted using the rectangle symbol with keyword «Datatype
Boolean».

 EANumerical (from Datatypes)

The datatype EANumerical is denoted using the rectangle symbol with keyword «Datatype
Numerical».

 EAString (from Datatypes)

The datatype EAString is denoted using the rectangle symbol with keyword «Datatype String».

 ElectricalComponent (from HardwareModeling)

EAST-ADL Domain Model Specification version V2.1.12

203 (244)

ElectricalComponent is shown as a solid-outline rectangle. The rectangle contains the name, and
its ports or port groups on the perimeter.

 Enumeration (from Datatypes)

The datatype Enumeration is denoted using the rectangle symbol with keyword «Datatype
Enumeration».

 EnumerationLiteral (from Datatypes)

An EnumerationLiteral is typically shown as a name, one per line, in the compartment of the
Enumeration notation.

 FunctionAllocation (from FunctionModeling)

A FunctionAllocation is shown as a dependency (dashed line) with an "allocation" keyword
attached to it.

 FunctionBehavior (from Behavior)

FunctionBehavior appears as a solid-outline rectangle with "Behavior" at the top right. The
rectangle contains the name.

 FunctionConnector (from FunctionModeling)

FunctionConnector is shown as a solid line

 HardwareComponentPrototype (from HardwareModeling)

Shall be shown in the same style as the class specified as type, however it shall be clear that this
is a part.

 Hazard (from Dependability)

The Hazard is shown as a solid-outline rectangle with "Haz" at the top right. It contains the name
of the Hazard and optionally the name of the source entity.

 HazardousEvent (from Dependability)

The HazardousEvent is shown as a solid-outline rectangle with "Haz" at the top right. It contains
the name of the HazardousEvent and optionally the name of the source entity.

 ImplementationLevel (from SystemModeling)

The ImplementationLevel is shown as a solid-outline rectangle containing the name.

 IOHardwarePin (from HardwareModeling)

IOHardwarePin is shown as a solid square with an IO inside. Its name may appear outside the
square.

 Node (from HardwareModeling)

Node is shown as a solid-outline rectangle with Node at the top right. The rectangle contains the
name, and its ports or port groups on the perimeter.

 PortGroup (from FunctionModeling)

FunctionConnectors connected to FunctionPorts of a PortGroup are graphically collapsed into a
single line.

The PortGroup is rendered as its contained ports, but with a double outline.

 PowerHardwarePin (from HardwareModeling)

EAST-ADL Domain Model Specification version V2.1.12

204 (244)

PowerHardwarePin is shown as a solid square with PWR inside. Its name may appear outside the
square.

 PrecedenceConstraint (from Timing)

PrecedenceConstraint is shown as a dashed arrow with "Precedes" next to it. It points from
preceeding to the successive entity.

 RangeableValueType (from Datatypes)

The datatype RangeableValueType is denoted using the rectangle symbol with keyword «Datatype
RangeableValueType».

 Realization (from Elements)

A Realization relationship is shown as a dashed line with a triangular arrowhead at the end that
corresponds to the realized entity. The entity at the tail of the arrow (the realizing EAElement or
the realizing ARElement) depends on the entity at the arrowhead (the realized EAElement).

 Refine (from Requirements)

A Refine relationship is shown as a dashed arrow between the Requirements and EAElement. The
entity at the tail of the arrow (the refining EAElement) depends on the Requirement at the
arrowhead (the refined Requirement).

 Requirement (from Requirements)

Requirement is shown as a solid rectangle with Req top right and its name.

 RequirementsHierarchy (from Requirements)

RequirementsHierarchy is shown as a solid-outline rectangle containing the name. Contained
entities may also be shown inside (White-box view)

 SafetyGoal (from SafetyRequirement)

SafetyGoal is a box with text SafetyGoal at the top left.

 Satisfy (from Requirements)

A Satisfy relationship is shown as a dashed line with an arrowhead at the end that corresponds to
the satisfied Requirement or UseCaseUseCase. The entity at the tail of the arrow (the satisfying
EAElement or the satisfying ARElement) depends on the entity at the arrowhead (the satisfied
Requirement or UseCaseUseCase).

 Sensor (from HardwareModeling)

Sensor is shown as an oval. The circle contains the name, and its ports or port groups on the
perimeter.

 SystemModel (from SystemModeling)

The default notation for a SystemModel is a solid-outline rectangle containing the SystemModel's
name, and with compartments separating by horizontal lines containing features or other members
of the SystemModel. Contained entities may also be shown with their connectors (White-box
view).

 VehicleLevel (from SystemModeling)

The VehicleLevel is shown as a solid-outline rectangle containing the name. Contained entities
may be shown (White-box view).

EAST-ADL Domain Model Specification version V2.1.12

205 (244)

 Verify (from VerificationValidation)

A Verify relationship is shown as a dashed arrow between the Requirements and VVCase.

 EADatatype (from Datatypes)

The EADatatype is denoted using the rectangle symbol with keyword «Datatype».

 FunctionPrototype (from FunctionModeling)

Shall be shown in the same style as the class specified as type, however it shall be clear that this
is a part.

 FunctionType (from FunctionModeling)

The FunctionType is shown as a solid-outline rectangle containing the name, with its
FunctionPorts or PortGroups on the perimeter. Contained entities may be shown with their
FunctionConnectors (White-box view).

EAST-ADL Domain Model Specification version V2.1.12

206 (244)

28 Annex B: Needs

This annex contains preliminary extensions to EAST-ADL for the modeling of stakeholder needs
and related information. It is fully aligned with the language but not yet validated and ready for
inclusion in the base specification.

28.1 Overview

This annex contains preliminary extensions to EAST-ADL for the modeling of stakeholder needs
and related information. It is fully aligned with the language but not yet validated and ready for
inclusion in the base specification.

Figure 36. Diagram for Needs.

28.2 Element Descriptions

28.2.1 ArchitecturalDescription (from Needs)

Generalizations

 Concept (from Needs)

Description
A collection of products to document an architecture. [IEEE 1471]

Attributes
No additional attributes

Associations

 aggregates : ArchitecturalModel [1..*] {composite}

file:///C:/Volvo/MAENAD/index.html%23Concept
file:///C:/Volvo/MAENAD/index.html%23ArchitecturalModel

EAST-ADL Domain Model Specification version V2.1.12

207 (244)

 identifies : Stakeholder [1..*]

Constraints
No additional constraints

Semantics
-

28.2.2 ArchitecturalModel (from Needs)

Generalizations

 Concept (from Needs)

Description
A view may consist of one or more architectural models. Each such architectural model is
developed using the methods established by its associated architectural viewpoint. An
architectural model may participate in more than one view. [IEEE 1471]

Attributes
No additional attributes

Associations

 isConceptFor : SystemModel [*]

Constraints
No additional constraints

Semantics
-

28.2.3 Architecture (from Needs)

Generalizations

 Concept (from Needs)

Description
The fundamental organization of a system embodied by its components, their relationships to each
other, and to the environment, and the principles guiding its design and evolution. [IEEE 1471]

Attributes
No additional attributes

Associations

 describedBy : ArchitecturalDescription [1]

Constraints
No additional constraints

Semantics
-

28.2.4 BusinessOpportunity (from Needs)

Generalizations

 TraceableSpecification (from Elements)

file:///C:/Volvo/MAENAD/index.html%23Stakeholder
file:///C:/Volvo/MAENAD/index.html%23Concept
file:///C:/Volvo/MAENAD/index.html%23SystemModel
file:///C:/Volvo/MAENAD/index.html%23Concept
file:///C:/Volvo/MAENAD/index.html%23ArchitecturalDescription
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

208 (244)

Description
The business opportunity represents a brief description of the business opportunity being met by
developing the electrical/electronic system which establishes traceability from artifacts created
later, for example to provide rationales to design decisions or trade-off analysis.

Attributes

 businessOpportunity : String [1]

This attribute holds a brief description of the business opportunity being met by developing
the electrical/electronic system. This redefines the text attribute in TraceableSpecification.

Associations

 motivatesDevelopmentOf : SystemModel [1..*]

The SystemModel that the BusinessOpportunity motivates development of.

 problemStatement : ProblemStatement [*]

Optional relation to brief statements summarizing the problem being solved.

 productPositioning : ProductPositioning [*]

The optional ProductPositioning provides an overall statement summarizing, at the highest
level, the unique position the product intends to fill in the marketplace.

Constraints
No additional constraints

Semantics
-

28.2.5 Concept (from Needs) {abstract}

Generalizations

 EAElement (from Elements)

Description
An abstract or general idea inferred or derived from specific instances. [Webster]

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

28.2.6 Mission (from Needs)

Generalizations

 Concept (from Needs)

Description
A mission is a use or operation for which a system is intended by one or more stakeholders to
meet some set of objectives. [IEEE 1471]

file:///C:/Volvo/MAENAD/index.html%23SystemModel
file:///C:/Volvo/MAENAD/index.html%23ProblemStatement
file:///C:/Volvo/MAENAD/index.html%23ProductPositioning
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Concept

EAST-ADL Domain Model Specification version V2.1.12

209 (244)

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

28.2.7 ProblemStatement (from Needs)

Generalizations

 TraceableSpecification (from Elements)

Description
The problem statement represents a brief statement summarizing the problem being solved which
gives the opportunity to establish traceability from artifacts created later, for example to provide
rationales to design decisions or trade-off analysis.

The problem statement could be extended with further modeling of dependencies between
different problems and deduction of root problems

Attributes

 impact : String [1]

The impact of the problem.

 problem : String [1]

The brief problem statement. This redefines the text attribute in TraceableSpecification.

 solutionBenefits : String [1]

Lists some key benefits of a successful solution.

Associations

 affects : Stakeholder [*]

The Stakeholders affected by the problem.

Constraints
No additional constraints

Semantics
-

28.2.8 ProductPositioning (from Needs)

Generalizations

 TraceableSpecification (from Elements)

Description
The problem positioning represents an overall brief statement summarizing, at the highest level,
the unique position the product intends to fill in the marketplace which gives the opportunity to
establish traceability from artifacts created later, for example to provide rationales to design
decisions or trade-off analysis.

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23Stakeholder
file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

210 (244)

Positioning is assumed to belong to a particular context, typically a system, but also for a smaller
part of a system.

Attributes

 drivingNeeds : String [1]

Brief statement of key benefit; that is, the compelling need for the product.

 keyCapabilities : String [1]

Brief statement of the key capabilities.

 primaryCompetitiveAlternative : String [1]

Brief statement of primary competitive alternative.

 primaryDifferentiation : String [1]

Brief statement of primary differentiation.

 targetCustomers : String [1]

Brief statement of target customers.

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

28.2.9 Stakeholder (from Needs)

Generalizations

 TraceableSpecification (from Elements)

Description
The stakeholder represents various roles with regard to the creation and use of architectural
descriptions. Stakeholders include clients, users, the architect, developers, and evaluators. [IEEE
1471]

Attributes

 responsibilities : String [1]

Summarize the Stakeholder's key responsibilities with regard to the electrical/electronic
system being developed; that is, their interest as a Stakeholder.

 successCriteria : String [0..1]

Describes how the Stakeholder defines success.

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification

EAST-ADL Domain Model Specification version V2.1.12

211 (244)

28.2.10 StakeholderNeed (from Needs)

Generalizations

 TraceableSpecification (from Elements)

Description
Stakeholder needs represent a list of the key problems as perceived by the stakeholder, and it
gives the opportunity to establish traceability from artifacts created later, for example to provide
rationales to design decisions or trade-off analysis.

Attributes

 need : String [1]

The brief need statement. Redefines text.

 priority : Integer [1]

The priority of the need.

Associations

 problemStatement : ProblemStatement [1..*]

The ProblemStatement that provide statements summarizing the problem being solved.

 stakeholder : Stakeholder [1..*]

Role with regard to the creation and use of architectural description.

Constraints
No additional constraints

Semantics
-

28.2.11 VehicleSystem (from Needs)

Generalizations

 Concept (from Needs)

Description
A collection of components organized to accomplish a specific function or set of functions. [IEEE
1471]

Attributes
No additional attributes

Associations

 hasAn : Architecture [1]

 fulfills : Mission [1..*]

 has : Stakeholder [1..*]

Constraints
No additional constraints

Semantics
-

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23ProblemStatement
file:///C:/Volvo/MAENAD/index.html%23Stakeholder
file:///C:/Volvo/MAENAD/index.html%23Concept
file:///C:/Volvo/MAENAD/index.html%23Architecture
file:///C:/Volvo/MAENAD/index.html%23Mission
file:///C:/Volvo/MAENAD/index.html%23Stakeholder

EAST-ADL Domain Model Specification version V2.1.12

212 (244)

29 Annex C: BehaviorDescription

This annex contains preliminary extensions to EAST-ADL for the modeling of behavior description.
It is fully aligned with the language but not yet validated and ready for inclusion in the base
specification.

EAST-ADL Domain Model Specification version V2.1.12

213 (244)

30 BehaviorDescription

30.1 Overview

The Behavior Description Annex provides the language support for allowing a more precise
declaration of various behavior concerns, such as assumed or implied by requirements and quality
constraints, assigned to system environment, functions and components, or test procedures. It
also constitutes the basis for consolidating such concerns in a common system design context and
a gateway for supporting model transformations from EAST-ADL to external methods and tools for
ensuring the analytical leverage.

In particular, this architectural language support would give the following benefits.

1. The modeling support for behavior constraint descriptions would allow the system developers to
refine textual requirements by formalizing the statements of use case and operational scenarios
and thereby to elicit, validate, and derive related concerns on the basis of particular architectural
design assumptions.

2. As a part of the overall language support for managing the traceability of requirement
satisfactions, the descriptions of behavior constraints can be used to specify the required
conformity of IP-protected black-box functions or components. This constitutes a basis for having
a more precise reasoning about the compositional effect (i.e. the compositionality and
composability).

3. By managing all behavioral specifications in a common architectural context, EAST-ADL
behavior descriptions provide the fundamental support for assessing the correctness and
completeness of refinements of system artifacts across multiple levels of abstraction for final code
generation.

4. By having all behavior specifications in the same context of architecture design, this language
package also provides a basis for capturing the design of advanced mode logics such as in regard
to fault-tolerance and quality-of-services. For such advanced features, the ability of describing,
predicting and managing the system wide effects of modes is of critical importance. This means
that one should be able to relate system modes control with system operational situations,
application behaviors, the schemes of execution and resource deployment, etc.

5. When targeting error specifications, the behavior descriptions can be used to refine the
definitions of estimated failure modes by providing a precise specification of faulty conditions in
value and time and capturing the transitions between nominal states and errors.

EAST-ADL Domain Model Specification version V2.1.12

214 (244)

Figure 37. Diagram for dependencies of BehaviorConstraints.

Figure 38. BehaviorConstraintParameterBinding

EAST-ADL Domain Model Specification version V2.1.12

215 (244)

Figure 39. Diagram for organization in BehaviorConstraints.

Figure 40. LogicalTimeConditionMappingToTiming

30.2 Element Descriptions

30.2.1 BehaviorConstraintBindingAttribute (from BehaviorDescription)

Generalizations

 BehaviorConstraintInternalBinding (from BehaviorDescription)

 Attribute (from AttributeQuantificationConstraint)

Description
BehaviorConstraintBindingEvent is a specialization of BehaviorConstraintBindingParameter.

file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintInternalBinding
file:///C:/Volvo/MAENAD/index.html%23Attribute

EAST-ADL Domain Model Specification version V2.1.12

216 (244)

It allows a behavior constraint type to declare the value attributes to be shared of its prototypes.

See also BehaviorConstraintBindingParameter.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

30.2.2 BehaviorConstraintBindingEvent (from BehaviorDescription)

Generalizations

 BehaviorConstraintInternalBinding (from BehaviorDescription)

 TransitionEvent (from TemporalConstraint)

Description
BehaviorConstraintBindingEvent is a specialization of BehaviorConstraintBindingParameter. It
allows a behavior constraint type to declare the discrete events to be shared by its prototypes.

See also BehaviorConstraintBindingParameter.

Attributes
No additional attributes

Associations
No additional associations

Constraints
No additional constraints

Semantics
-

30.2.3 BehaviorConstraintInternalBinding (from BehaviorDescription) {abstract}

Generalizations
None

Description
BehaviorConstraintInternalBinding is the modeling construct for the declaration of parameters to
be shared by the parts (i.e. behavior constraint prototypes) of a behavior constraint type. In other
words, a behavior constraint type uses such parameters to bind the parameters of its parts
(BehaviorConstraintType.part:BehaviorConstraintPrototype.instantiationVariable). For such a
binding, the declarations of prototype instantiation
(BehaviorConstraintType.part:BehaviorConstraintPrototype.instantiationVariable) refer directly to
the part binding parameters of the instantiation context
(BehaviorConstraintType.partBindingParameter)

Each binding parameter can have a structural correspondence
(bindingThroughFunctionConnector, bindingThroughClampConnector, bindingThrough-
LogicalBus, or bindingThrough-HardwareConnector), stating the structural channels through which
the binding takes place.

file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintInternalBinding
file:///C:/Volvo/MAENAD/index.html%23TransitionEvent

EAST-ADL Domain Model Specification version V2.1.12

217 (244)

In the meta-model, the abstract binding parameter is further specialized into

* BehaviorConstraintBindingAttribute - the contextual parameters that are value attributes.

* BehaviorConstraintBindingEvent - the contextual parameters that are discrete events.

Attributes
No additional attributes

Associations

 bindingThroughClampConnector : ClampConnector [*]

Dependencies

 bindingThroughFunctionConnector : FunctionConnector [*]

«instanceRef»

 bindingThroughHardwareConnector : HardwareConnector [*]

«instanceRef»

Constraints
[1] When a binding of behavior constraint prototypes go across different system functions or
components, there should be at least one corresponding structural communication connector
through which such bindings can take place (i.e. bindingThroughFunctionConnector,
bindingThroughClampConnector, bindingThrough-LogicalBus, or bindingThrough-
HardwareConnector).

Semantics
A BehaviorConstraintBindingParameter is an event- or data- channel connecting behaviors. See
also Attribute and TransitionEvent.

30.2.4 BehaviorConstraintParameter (from BehaviorDescription) {abstract}

Generalizations
None

Description
BehaviorConstraintParameter is the modeling construct for the declarations of the parameters that
a behavior constraint type offer for its instantiations. During the instantiation, a behavior constraint
prototype declares the particular contextual parameters to be bound
(BehaviorConstraintPrototype.BehaviorinstantiatedWithParameter) with the parameters of its
corresponding behavior constraint types
(BehaviorConstraintPrototype.type:BehaviorConstraintType.parameter). This allows thereby the
values of those contextual parameters to be assigned to the parameters of prototypes.

Attributes
No additional attributes

Associations
No additional associations

Constraints
See Attribute and TransitionEvent.

Semantics
See Attribute and TransitionEvent.

file:///C:/Volvo/MAENAD/index.html%23ClampConnector
file:///C:/Volvo/MAENAD/index.html%23FunctionConnector
file:///C:/Volvo/MAENAD/index.html%23HardwareConnector

EAST-ADL Domain Model Specification version V2.1.12

218 (244)

30.2.5 BehaviorConstraintPrototype (from BehaviorDescription) «atpPrototype»

Generalizations

 TraceableSpecification (from Elements)

Description
BehaviorConstraintPrototype is the modeling construct for declaring the instantiated occurrence(s)
of a behavior constraint type (BehaviorConstraintPrototype.type) in particular behavior
specification context where the behavior constraint type acts as part.

BehaviorConstraintPrototype.instantiationVariable {ordered} is declared by
BehaviorConstraintPrototype.type.interfaceVariable {ordered}

Attributes
No additional attributes

Associations

 targetedVehicleFeatureElement : VehicleFeature [*]

The corresponding vehicle feature elements of a behavior constraint prototype.

 instantiationVariable : BehaviorConstraintInternalBinding [*] {ordered}

The contextual parameters used for the prototype instantiation.

 type : BehaviorConstraintType [1]

«isOfType»

The behavior constraint type instantiated by the prototype.

Dependencies

 functionTarget : FunctionPrototype [*]

«instanceRef»

 hardwareComponentTarget : HardwareComponentPrototype [*]

«instanceRef»

 errorModelTarget : ErrorModelPrototype [*]

«instanceRef»

Constraints
[1] A BehaviorConstraintPrototype must has a type (BehaviorConstraintPrototype.type) and a
context where it acts as part (BehaviorConstraintType.part).

BehaviorConstraintType.part:BehaviorConstraintPrototype.instantiationVariable can only be a
subset of the BehaviorConstraintType.interfaceVariable.

Semantics
See BehaviorConstraintType.

30.2.6 BehaviorConstraintTargetBinding (from BehaviorDescription)

Generalizations

 Relationship (from Elements)

Attributes
No additional attributes

Associations

 targetedVehicleFeature : VehicleFeature [*]

file:///C:/Volvo/MAENAD/index.html%23TraceableSpecification
file:///C:/Volvo/MAENAD/index.html%23VehicleFeature
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintInternalBinding
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintType
file:///C:/Volvo/MAENAD/index.html%23FunctionPrototype
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentPrototype
file:///C:/Volvo/MAENAD/index.html%23ErrorModelPrototype
file:///C:/Volvo/MAENAD/index.html%23Relationship
file:///C:/Volvo/MAENAD/index.html%23VehicleFeature

EAST-ADL Domain Model Specification version V2.1.12

219 (244)

The target vehicle feature of a behavior constraint description.

 targetedFunctionType : FunctionType [*]

The target function of a behavior constraint description.

 targetedHardwareComponentType : HardwareComponentType [*]

 constrainedModeBehavior : Mode [*]

The mode definition being refined by a behavior constraint description.

 constrainedFunctionBehavior : FunctionBehavior [*]

The function behavior being refined by a behavior constraint description.

 constrainedFunctionTriggering : FunctionTrigger [*]

The function triggering being refined by a behavior constraint description.

 constrainedErrorModel : ErrorModelType [*]

The error model being refined by a behavior constraint description.

 behaviorConstraintType : BehaviorConstraintType [1]

Constraints
No additional constraints

Semantics
-

30.2.7 BehaviorConstraintType (from BehaviorDescription) «atpType»

Generalizations

 Context (from Elements)

Description
The specification of behavior constraints provides the modeling support for formalizing, integrating,
and managing various behavioral concerns in a common context of system architecture design. A
behavior constraint can be annotated either for refining requirements or for precisely defining the
behavioral properties of design and analysis artifacts.

According to the fundamental needs of system design and analysis, an EAST-ADL behavior
constraint specification is subdivided into three categories (i.e. AttributeQuantificationConstraint,
TemporalConstraint, and ComputationConstraint). It is up to the users of EAST-ADL language,
according to their particular design and analysis contexts, to decide the exact types and degree of
constraints to be applied.

A behavior constraint specification has both type and prototype(s) based on a type-prototype
pattern for composition. The behavior constraint type specification establishes a template for a
range of behavioral concerns that share some common declarations and semantics. A behavior
constraint type can have parameters (i.e. events and data) for its instantiations in particular
contexts. A behavior constraint type can also have internal parameters shareable by its own
prototypes. The behavior constraint prototype specifications declare the particular instantiations of
the type. During an instantiation, the parameters of behavior constraint type are bound to some
parameters of the contexts (which are the partBindingParameter of the contextual behavior
constraint types). Through such binding declarations, the prototypes of behavior constraint types
(i.e. their instantiations) are connected to the contextual parameters.

EAST-ADL associates behavior constraints to the requirements, design or analysis artifacts. Due
to such associations, a behavior constraint specification can get many different roles in system

file:///C:/Volvo/MAENAD/index.html%23FunctionType
file:///C:/Volvo/MAENAD/index.html%23HardwareComponentType
file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23FunctionBehavior
file:///C:/Volvo/MAENAD/index.html%23FunctionTrigger
file:///C:/Volvo/MAENAD/index.html%23ErrorModelType
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintType
file:///C:/Volvo/MAENAD/index.html%23Context

EAST-ADL Domain Model Specification version V2.1.12

220 (244)

development and thereby be composed with or related to other behavior constraints in many
different ways.

1. When associated to requirements with a Refine relationship, a behavior constraint specification
refines the textual requirement descriptions.

2. When associated to functions and function behaviors, a behavior constraint specification
defines the behavioral properties that have to be satisfied for the reasoning of system design (i.e.
the compositionality and composability) and realizations.

3. When associated to modes, a behavior constraint specification defines the behavioral concerns
of system modes, including their relations to other system application and execution behaviors.

4. When associated to error models, a behavior constraint specification refines the definitions of
estimated failure modes by providing a precise specification of faulty conditions in value and time
and constitutes a basis for capturing the transitions between nominal states and errors.

Attributes
No additional attributes

Associations

 sharedVariable : BehaviorConstraintInternalBinding [*]

Parameters that a behavior constraint type has for binding its parts (i.e. prototypes).

 attributeQuantificationConstraint : AttributeQuantificationConstraint [*] {composite}

The attribute quantification constraints underlying a behavior constraint specification.

 interfaceVariable : BehaviorConstraintParameter [*] {ordered}

The parameters that a behavior constraint type offer at its interface for its instantiation.

 computationConstraint : ComputationConstraint [*] {composite}

The computation constraints underlying a behavior constraint specification.

 temporalConstraint : TemporalConstraint [*] {composite}

The temporal constraints underlying a behavior constraint specification.

 part : BehaviorConstraintPrototype [*] {composite}

Other behavior constraints that are instantiated as the internal parts.

Constraints
[1] A behavior constraint references at least one requirement, vehicle feature, mode, function type,
function behavior, function trigger, or error behavior definition.

Semantics
The EAST-ADL support for explicit behavior description is fundamentally a Hybrid-System Model,
i.e. an aggregation of AttributeQuantificationConstraint, TemporalConstraint, and
ComputationConstraint.

A behavior constraint type is instantiated with prototypes.

file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintInternalBinding
file:///C:/Volvo/MAENAD/index.html%23AttributeQuantificationConstraint
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintParameter
file:///C:/Volvo/MAENAD/index.html%23ComputationConstraint
file:///C:/Volvo/MAENAD/index.html%23TemporalConstraint
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintPrototype

EAST-ADL Domain Model Specification version V2.1.12

221 (244)

31 AttributeQuantificationConstraint

31.1 Overview

Figure 41. AttributeQuantificationConstraint

31.2 Element Descriptions

31.2.1 Attribute (from AttributeQuantificationConstraint) «atpPrototype»

Generalizations

 EAElement (from Elements)

 BehaviorConstraintParameter (from BehaviorDescription)

Description
The attribute (Attribute) denotes a parameter or argument of a behavior constraint specification.
An attribute can be a constant, simple, or complex data, given by the corresponding EAST-ADL
data types (EADataType) for the related meta-information like unit, valid range, required accuracy,
etc.

An attribute can represent an in-, out-, or local-quantity to be processed. If an attribute is externally
visible (isExternVisible = true), it denotes an input or output variable and has associated structural
ports given by the function ports for the external accesses.

Attributes are instantiation parameters (BehaviorInstantiationParameter), to which certain values
can be assigned when a behavior constraint type is instantiated as behavior constraint instances
(i.e. prototypes) in certain specification contexts.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintParameter

EAST-ADL Domain Model Specification version V2.1.12

222 (244)

Attributes

 isExternVisible : Boolean = false [1]

Associations

 type : EADatatype [1]

«isOfType»

The type of the attribute.

Constraints
[1] An attribute must be typed by EADataType.

Semantics
The attributes of a behavior constraint specification is a subset of elements in the vector space of
R^n, where R is the real number and n is a natural number defining the dimension of vector space.

31.2.2 AttributeQuantificationConstraint (from AttributeQuantificationConstraint)

Generalizations

 EAElement (from Elements)

Description
Attribute quantification constraints (AttributeQuantificationConstraint) are concerned with the value
conditions of attributes underlying a behavior on a timeline. They are useful for declaring the
variables (e.g. the input-, output- and internal variables of a function), their expected values and
logical relations. An attribute quantification constraint can be expressed either by simple equations
like F = m*a, V >= 90, or dynamics models. When necessary, the straints on computational
operations for data transformations and value assignment can be declared through the
computation constraints (ComputationConstraint).

Attributes
No additional attributes

Associations

 quantification : Quantification [*] {composite}

The attributes quantification of a behavior constraint.

 attribute : Attribute [*] {composite}

The value attributes of a behavior constraint.

Constraints
No additional constraints

Semantics
The attribute quantification constraint specification is a pair/tuple of two sets: 1. the set of
attributes for the behavior being specified; 2. the set of quantification statements over the
attributes.

31.2.3 BehaviorAttributeBinding (from AttributeQuantificationConstraint)

Generalizations

 Relationship (from Elements)

Attributes
No additional attributes

file:///C:/Volvo/MAENAD/index.html%23EADatatype
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23Relationship

EAST-ADL Domain Model Specification version V2.1.12

223 (244)

Associations

 visibleThroughFunctionPort : FunctionPort [*]

The corresponding function ports for an attribute.

 visibleThroughHardwarePin : HardwarePin [*]

A pin in the mapped HardwareComponentType.

 visibleThroughHardwarePort : HardwarePort [*]

A port in the mapped HardwareComponentType.

 visibleThroughAnomaly : Anomaly [*]

An anomaly in the mapped ErrorFunctionType.

 attribute : Attribute [1..*]

Constraints
No additional constraints

Semantics
-

31.2.4 LogicalEvent (from AttributeQuantificationConstraint)

Generalizations

 Quantification (from AttributeQuantificationConstraint)

Description
Logical Event is the modeling construct for the declarations of the value conditions that, when
fulfilled, may trigger state transitions. If a logical event is externally visible (isExternVisible == true),
it is disseminated through function ports.

Attributes

 isExternVisible : Boolean = false [1]

Associations

 visibleThroughFunctionPort : FunctionPort [*]

Constraints
see Quantification.

Semantics
see Quantification.

31.2.5 Quantification (from AttributeQuantificationConstraint)

Generalizations

 EAElement (from Elements)

 EAExpression (from Values)

Description
A quantification is a statement over the attributes about their value condition or relation.

Together with the attribute definitions, it also provides the support for annotating acausal dynamic
behavior constraints in terms of continuous-time and discrete-time dynamics models. In the
development of embedded systems, such acausal specifications of behaviors are necessary for
the definitions of system environments (e.g. the physical plants), electrical and electronics devices
(e.g. the transfer functions of actuators)

file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23HardwarePin
file:///C:/Volvo/MAENAD/index.html%23HardwarePort
file:///C:/Volvo/MAENAD/index.html%23Anomaly
file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23FunctionPort
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAExpression

EAST-ADL Domain Model Specification version V2.1.12

224 (244)

Attributes
No additional attributes

Associations

 operand : Attribute [1..*] {ordered}

The operands of quantification expressions.

 timeCondition : LogicalTimeCondition [0..1]

Constraints
[1] A quantification is applied to at least one attribute.

Semantics
The quantification is a tuple of: 1. the operands of quantification expressions given by attributes; 2.
the time conditions of concern; 3. the actual expressions of properties over single or multiple
attributes.

EAST-ADL does not define logic and arithmetic operators for the expressions of parameter
conditions but would support the definitions in future extensions.

file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition

EAST-ADL Domain Model Specification version V2.1.12

225 (244)

32 ComputationConstraint

32.1 Overview

Figure 42. ComputationConstraint

32.2 Element Descriptions

32.2.1 ComputationConstraint (from ComputationConstraint)

Generalizations

 EAElement (from Elements)

file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

226 (244)

Description
Computation constraints (ComputationConstraint) provide the language support for specifying the
restrictions on data processing, especially when the details of design are not available (e.g. for the
reasons of software component IP-protection). The descriptions can be related both to the
expected logical transformations of data and to the expected cause-effect flow of events.

Attributes
No additional attributes

Associations

 logicalTransformation : LogicalTransformation [*] {composite}

The required computation activities.

 logicalPath : LogicalPath [*] {composite}

The paths of quantities across the required computation activities.

Constraints
[1] A computation constraint contains at least one transformation or one flow definition.

Semantics
The EAST-ADL computation constraint is a pair/tuple of: 1. a set of restrictions on the logical
transformations of data, 2. a set of restrictions on the cause-effect paths logical transformations.

32.2.2 LogicalPath (from ComputationConstraint)

Generalizations

 EAElement (from Elements)

Description
The EAST-ADL logical path (LogicalPath) is a set of restrictions on the cause-effect flows of some
observable logical and executional events. It provides the modeling support for annotating the
expected cause-effect traces across a system or a component.

A logical path specifies the overall causality of computation by relating execution events with
logical transformations and logical events. An execution event can be the triggering of function,
port reading or writing, which constitutes the basis for the description of execution control using
timing event chains (Timing::EventChain). Compared to such execution events, the logical
transformation and logical events are only concerned with the computational logic. The
specification of logical path allows the internal causality of the computations of a
function/component to be captured and merged explicitly with the related external execution
events.

Logical paths can be combined in parallel (strand) or in sequence (segment).

Attributes
No additional attributes

Associations

 precedingExecutionEventChain : EventChain [*]

The preceding execution event chains.

 succeedingExecutionEventChain : EventChain [*]

The succeeding execution event chains.

 correspondingExecutionEventChain : EventChain [*]

The corresponding execution event chains.

 logicalResponse : LogicalEvent [*]

file:///C:/Volvo/MAENAD/index.html%23LogicalTransformation
file:///C:/Volvo/MAENAD/index.html%23LogicalPath
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23EventChain
file:///C:/Volvo/MAENAD/index.html%23LogicalEvent

EAST-ADL Domain Model Specification version V2.1.12

227 (244)

The logical stimulus of a logical path.

 logicalStimulus : LogicalEvent [*]

The logical response of a logical path.

 transformationOccurrence : TransformationOccurrence [0..1] {composite}

The activation of logical transformations in a logical path.

 strand : LogicalPath [*]

Other logical paths in parallel (strand).

 segment : LogicalPath [*] {ordered}

Other subordinate logical pathes in sequence.

Constraints
No additional constraints

Semantics
A logical path is a set of restrictions on the cause-effect flows of computation. When applied to a
function/component, a logical path defines the correspondence from a triple of logical stimulus
(logicalStimulus), logical transformation (transformationOccurrance), and logical response
(logicalResponse), to a triple of preceding execution event chains (precedingEventChain), the
corresponding execution event chains (correspondingExecutionEventChain), and the succeeding
execution event chains (succeedingEventChain).

By describing the internal causality of a function/component, a logical path may refine an
execution event chain (correspondingExecutionEventChain), which is primarily used to capture the
causality of triggering, port reading and writing events.

32.2.3 LogicalTransformation (from ComputationConstraint)

Generalizations

 EAElement (from Elements)

Description
A logical transformation (LogicalTransformation) is a set of restrictions on the computation activity
for some data. That is, given some in-&local-data that meet certain preconditions, such a
computation activity always maps such data to some out-data that meet the related postconditions
if the time-&value-invariants are not violated during the computation.

Each computation activity executes some functions for the mapping of quantities, which can be
based on arithmetic, Boolean- or string-related calculations. The expressions (Expression) for any
further lower level details of a transformation can be based on an external language, such as the
MISRA-C.

A logical transformation can define the following conditions of computation activity:

1. The pre-conditions, i.e. the quantifications that must be satisfied just prior to data-processing,

2. The value-invariants, i.e. the value conditions that must be satisfied throughout the execution of
data-processing,

3. The time-invariants, i.e. the time conditions that must be satisfied throughout the execution of
data-processing,

4. The post-conditions, i.e. the quantifications that must be satisfied just after the execution of
data-processing.

file:///C:/Volvo/MAENAD/index.html%23LogicalEvent
file:///C:/Volvo/MAENAD/index.html%23TransformationOccurrence
file:///C:/Volvo/MAENAD/index.html%23LogicalPath
file:///C:/Volvo/MAENAD/index.html%23LogicalPath
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

228 (244)

Attributes

 isClientServerInterface : Boolean = false [1]

Associations

 clientServerInterfaceOperation : Operation [*]

The client-server interface that a logical transformation description is applied to
(isClientServerInterface=true).

 expression : EAExpression [0..1] {composite}

 contained : Attribute [*] {ordered}

The data that are used both as internal attribute of the transformation.

 out : Attribute [*] {ordered}

The output data of the transformation.

 in : Attribute [*] {ordered}

The input data of the transformation.

 quantificationInvariant : Quantification [*]

The parameter conditions that must remain unchanged by the execution of the
transformation.

 preCondition : Quantification [*]

The parameter conditions that must hold before the execution of the transformation.

 postCondition : Quantification [*]

The parameter conditions that must hold after the execution of the transformation.

 timeInvariant : LogicalTimeCondition [0..1]

The duration bounds when the transformation takes place.

Constraints
[1] If a logical transformation description is applied to a client-server interface
(isClientServerInterface=true), it has at least one corresponding operation specified in a client-
server interface definition (FunctionModelling::Operation).

Semantics
The computation activity of a logical transformation can be activated in logical paths or in state
transitions. The execution follows the run-to-completion assumption. This means that the
execution is only possible when the previous execution instance of the same transformation is fully
completed. For a system function, the amount of time to execute its transformations is constrained
by the EAST-ADL function event in the timing package.

32.2.4 TransformationOccurrence (from ComputationConstraint)

Generalizations

 EAElement (from Elements)

Description
A transformation occurrence (TransformationOccurrence) denotes the activations of logical
transformations due to state transitions or logical paths. A transformation occurrence can also
have a time condition (timeCondition), stating the time instances when the invocation happens. If a
logical transformation is invoked, its in-data will be assigned with particular values by the
invocation context (inQuantification). As the consequence of transformation, the out-data will also
be assigned with particular value (outQuantification).

file:///C:/Volvo/MAENAD/index.html%23Operation
file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23Attribute
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

229 (244)

Attributes
No additional attributes

Associations

 inQuantification : Quantification [*] {ordered}

 outQuantification : Quantification [*] {ordered}

 invokedLogicalTransformation : LogicalTransformation [1]

The definitions of logical transformations to be invoked.

 timeCondition : LogicalTimeCondition [0..1]

Constraints
No additional constraints

Semantics
A logical transformation can only occur in a state transition or a logical path. In such an
occurrence, a set of logical transformations are invoked. Given some particular quantifications of
in-data (inQuantification) and time conditions (timeCondition), some the particular quantifications
of out-data will be satisfied after the invocation.

file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23LogicalTransformation
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition

EAST-ADL Domain Model Specification version V2.1.12

230 (244)

33 TemporalConstraint

33.1 Overview

EAST-ADL Domain Model Specification version V2.1.12

231 (244)

Figure 43. TemporalConstraint

Figure 44. EventOccurrenceMappingToEvents

Figure 45. Diagram for Transition.

33.2 Element Descriptions

EAST-ADL Domain Model Specification version V2.1.12

232 (244)

33.2.1 LogicalTimeCondition (from TemporalConstraint)

Generalizations

 EAElement (from Elements)

Description
The logical time condition is an abstract notion of time for the descriptions of behavior constraints.
Declarations of such time conditions can be used to define the time basis of continuous- and
discrete-time dynamics or the timing concerns in statemachine or data-processing related
behaviors.

The semantics of logical time conditions can be further refined by associating such conditions to
the occurrences of execution events (TransitionEvents), such as for defining the change of an
environmental condition or the triggering of a function. This makes it possible to precisely define
the reference points of a time interval (i.e. startPointReference and endPointReference).

A time condition can have a consecutive time condition on the same time line. E.g. if
condition1=[t1, t2], then the consecutive time condition is condition2=[t2, t3].

With EAST-ADL, the expression of the value of a logical time condition is based on the
Timing::TimeDuration in the format of CseCode as in AUTOSAR and MSR/ASAM. For
descriptions where the notion of time proceeding is not of interest, a time condition with
isLogicalTimeSuspended=true has to be explicitly declared and used.

Attributes

 isLogicalTimeSuspended : Boolean = false [1]

Associations

 width : EAValue [0..1] {composite}

 lower : EAValue [0..1] {composite}

 upper : EAValue [0..1] {composite}

 endPointReference : TransitionEvent [0..1]

 startPointReference : TransitionEvent [0..1]

The event occurance used as a reference point for the start of measuring the time
duration.

 consecutiveTimeCondition : LogicalTimeCondition [0..1]

The consecutive time condition on the same time line.

Constraints
No additional constraints

Semantics
A logical time condition (LTC) is an infinite sequence of time intervals

33.2.2 State (from TemporalConstraint)

Generalizations

 EAElement (from Elements)

Description
A system or component can have a finite set of discrete states. Each state defines a situation
where certain value invariant (quantificationInvariant) and/or time invariant (timeInvariant) hold.

A state s is an initial state when isInitState=true.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23EAValue
file:///C:/Volvo/MAENAD/index.html%23TransitionEvent
file:///C:/Volvo/MAENAD/index.html%23TransitionEvent
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition
file:///C:/Volvo/MAENAD/index.html%23EAElement

EAST-ADL Domain Model Specification version V2.1.12

233 (244)

In the context of system design, a state s can represent one or multiple operation modes when
isMode=true; or one or multiple errors in the system when isError=true, or hazards when
isHazard=true.

Attributes

 isErrorState : Boolean = false [1]

 isHazard : Boolean = false [1]

 isInitState : Boolean = false [1]

Indicating an initial state when the value is true.

 isMode : Boolean = false [1]

Associations

 modeDeclaration : Mode [*]

The operation modes represented by a state (when isMode=true)

 hazardDeclaration : Hazard [*]

The hazards represented by a state (when isHazard=true).

 quantificationInvariant : Quantification [*]

The value invariants of a state, i.e. the value conditions that must hold in a state.

 timeInvariant : LogicalTimeCondition [*]

The time invariants of a state, i.e. the time conditions that must hold in a state.

Constraints
No additional constraints

Semantics
Each state defines a situation where certain value- and/or time-conditions in terms of state
invariants hold.

33.2.3 StateEvent (from TemporalConstraint)

Generalizations

 Event (from Timing)

Attributes
No additional attributes

Associations

 end : State [0..1]

 start : State [0..1]

Constraints
No additional constraints

Semantics
-

33.2.4 SynchronousTransition (from TemporalConstraint)

Generalizations

 Transition (from TemporalConstraint)

file:///C:/Volvo/MAENAD/index.html%23Mode
file:///C:/Volvo/MAENAD/index.html%23Hazard
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23State
file:///C:/Volvo/MAENAD/index.html%23State
file:///C:/Volvo/MAENAD/index.html%23Transition

EAST-ADL Domain Model Specification version V2.1.12

234 (244)

Description
SynchronousTransition denotes a specialization of discrete transitions (Transition) of which the
firing can be synchronized by explicit rendezvous events.

Attributes
No additional attributes

Associations

 writeTransitionEvent : TransitionEvent [0..1]

 readTransitionEvent : TransitionEvent [0..1]

Constraints
[1] For behavior constraint descriptions that target application software functions,
SynchronousTransition should not be applied.

Semantics
When all the given guard conditions are met, a transition will be fired to respond to the occurrence
of an event (which is indicated by the role readEventOccurrences?) or to signal the occurrence of
an event (which is indicated by the role writeEventOccurrance!). A transition, when fired, will lead
to the exit of the associated "from" state and an entrance to the associated "to" state, while
invoking one or more logical transformations (TransformationOccurrance!) as the effects of the
transition.

33.2.5 TemporalConstraint (from TemporalConstraint)

Generalizations

 EAElement (from Elements)

Description
Temporal constraints (TemporalConstraint) provide the language support for capturing the
concerns relating to discrete behavior, which emphasizes the dependency that a behavior has in
regard to its own history and other behaviors on a timeline. They are useful for precisely defining
requirements or design solutions.

A temporal constraint consists of a set of states of discrete behavior, a set of occurrences of
discrete events, a set of discrete transitions; and a set of time intervals that constitute the logical
time basis of discrete behavior

Attributes
No additional attributes

Associations

 assertion : EAExpression [0..1] {composite}

 transitionEvent : TransitionEvent [*] {composite}

The events, when occurred, fire the transitions of discrete behaviors.

 timeCondition : LogicalTimeCondition [*] {composite}

 transition : Transition [*] {composite}

Owned transitions.

 initState : State [1]

A state s is an initial state when isInitState=true.

 state : State [*] {composite}

Owned states.

file:///C:/Volvo/MAENAD/index.html%23TransitionEvent
file:///C:/Volvo/MAENAD/index.html%23TransitionEvent
file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23EAExpression
file:///C:/Volvo/MAENAD/index.html%23TransitionEvent
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition
file:///C:/Volvo/MAENAD/index.html%23Transition
file:///C:/Volvo/MAENAD/index.html%23State
file:///C:/Volvo/MAENAD/index.html%23State

EAST-ADL Domain Model Specification version V2.1.12

235 (244)

Constraints
[1] A Temporal constraint has a single initial state.

Semantics
The definition of temporal constraint is based on a generic definition of automata. That is, a
temporal constraint is a tuple of: 1. a set of states of discrete behavior; 2. a set of occurrences of
discrete events; 3. a set of discrete transitions; and 4. a set of time intervals that constitute the
logical time basis of discrete behavior.

The execution has the following pattern: In one state, read certain parameter, upon certain
parameter condition(s) and event occurrence(s), do certain transitions(s) to go to another state.
Only one state is active during the operation.

33.2.6 Transition (from TemporalConstraint)

Generalizations

 EAElement (from Elements)

Description
Discrete transitions (Transition) describe the possible switches between discrete states due to the
occurrences of discrete events or due to the violations of a state invariant in time or in value
quantification.

See also Transition.

Attributes
No additional attributes

Associations

 quantificationGuard : Quantification [*]

The value guard conditions of a transition.

 effect : TransformationOccurrence [0..1]

The transformations to be activated when the transition is fired.

 timeGuard : LogicalTimeCondition [*]

The time guard conditions of a transition.

 to : State [1]

The target state of the transition.

 from : State [1]

The source state of the transition.

Constraints
[1] A transition connects one or two states. This means that the from and to roles can be applied
to two distinct states or a single state.

Semantics
When all the given guard conditions are met, a transition will be fired. A transition, when fired, will
lead to the exit of the associated "from" state and an entrance to the associated "to" state, while
invoking one or more logical transformations (TransformationOccurrance!) as the effects of the
transition.

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23Quantification
file:///C:/Volvo/MAENAD/index.html%23TransformationOccurrence
file:///C:/Volvo/MAENAD/index.html%23LogicalTimeCondition
file:///C:/Volvo/MAENAD/index.html%23State
file:///C:/Volvo/MAENAD/index.html%23State

EAST-ADL Domain Model Specification version V2.1.12

236 (244)

33.2.7 TransitionEvent (from TemporalConstraint)

Generalizations

 EAElement (from Elements)

 BehaviorConstraintParameter (from BehaviorDescription)

Description
A transition event denotes the occurrence, i.e. the actual happening, of certain logical, execution
specific, and erroneous conditions, that fires the transitions of discrete behavior.

* An occurred logical event (occurredLogicalEvent) denotes a logical condition (e.g. when the
measured value of vehicle speed is below 30 km/h) that takes place at a particular time instance
and becomes valid in a certain time interval according to the definition of corresponding
quantification. Logical events of input or output variables (defined through Attribute) can be
communicated through the corresponding ports.

* An occurred execution specific event (occurredExecutionEvent) denotes a distinct form of
condition change in system execution at distinct points in time, such as at the triggering of a
function, or at the receiving/sending of data from/to ports.

* The occurrence of a fault, a failure, or a hazard (occurredFeatureFlaw,
occurredHazardousEvent, or occurredFaultFailure) denotes a distinct form of deviation from
nominal behaviors in certain time condition, of which the estimated existences are expressed by
the corresponding anomaly or hazard definition.

Attributes
No additional attributes

Associations

 occurredExecutionEvent : Event [*]

 occurredFeatureFlaw : FeatureFlaw [*]

 occurredHazardousEvent : HazardousEvent [*]

 occurredFaultFailure : FaultFailure [*]

The fault(s)/failure(failures) represented by the parameter condition.

 occurredLogicalEvent : LogicalEvent [*]

Constraints
[1] The set of occurred erroneous events ((occurredFeatureFlaw, occurredHazardousEvent, or
occurredAnomaly) is a symmetric set difference of feature flaws (Dependability::FeatureFlaw),
system hazards (Dependability::HazardeousEvent, and system faults/failures
(ErrorModel::Anomaly) as such concepts only differ in scope or in abstraction level.

Semantics
A transition between two states of discrete behavior can be fired to respond to the occurrence of
an event (which is indicated by the role readEventOccurrences?) or to signal the occurrence of an
event (which is indicated by the role writeEventOccurrance!).

file:///C:/Volvo/MAENAD/index.html%23EAElement
file:///C:/Volvo/MAENAD/index.html%23BehaviorConstraintParameter
file:///C:/Volvo/MAENAD/index.html%23Event
file:///C:/Volvo/MAENAD/index.html%23FeatureFlaw
file:///C:/Volvo/MAENAD/index.html%23HazardousEvent
file:///C:/Volvo/MAENAD/index.html%23FaultFailure
file:///C:/Volvo/MAENAD/index.html%23LogicalEvent

EAST-ADL Domain Model Specification version V2.1.12

237 (244)

34 Index

Actor.. 101

Actuator ... 53, 55, 56, 202

AgeConstraint ... 121, 122, 129

AllocateableElement .. 41, 44, 46, 47

Allocation... 22, 42

AllocationTarget .. 46, 56, 58, 60

AnalysisFunctionPrototype .. 21, 42, 43

AnalysisFunctionType ... 21, 42, 43, 45

AnalysisLevel .. 20, 21, 23, 25, 40, 43, 51, 202

Anomaly .. 151, 152, 156, 158, 160, 223, 236

ArbitraryConstraint .. 122

ArchitecturalDescription .. 206, 207

ArchitecturalModel ... 206, 207

Architecture ... 18, 19, 21, 55, 56, 62, 65, 104, 202, 207, 211

ArrayDatatype ... 176, 177, 183, 202

ASILKind ... 147, 159, 161, 163

Attribute .. 80, 215, 217, 221, 222, 223, 224, 228, 236

AttributeQuantificationConstraint ... 215, 219, 220, 221, 222, 223

AUTOSAREvent .. 136

BasicSoftwareFunctionType .. 43

Behavior ...51, 67, 68, 69, 70, 71, 72, 73, 203, 213, 217

BehaviorAttributeBinding ... 222

BehaviorConstraintBindingAttribute ... 215, 217

BehaviorConstraintBindingEvent ... 215, 216, 217

BehaviorConstraintInternalBinding .. 215, 216, 218, 220

BehaviorConstraintParameter ... 217, 220, 221, 236

BehaviorConstraintPrototype ... 216, 217, 218, 220

BehaviorConstraintTargetBinding .. 218

BehaviorConstraintType .. 216, 217, 218, 219

BindingTime .. 26, 29, 86

BindingTimeKind ... 26, 27

Boolean31, 38, 51, 57, 59, 60, 72, 73, 79, 81, 84, 96, 157, 180, 184, 202, 222, 223, 227, 228, 232,
233

BurstConstraint ... 123

BusinessOpportunity ... 207, 208

Claim ... 165, 166, 167, 168

EAST-ADL Domain Model Specification version V2.1.12

238 (244)

ClampConnector ... 64, 65, 84, 86, 217

ClientServerKind ... 43, 44, 47, 54

Comment .. 188, 189, 190, 193

CommunicationHardwarePin ... 56, 202

ComparisonConstraint ... 121, 123, 124

ComparisonKind .. 124

CompositeDatatype ... 50, 177, 184, 202

ComputationConstraint .. 219, 220, 222, 225, 226, 227, 228

Concept ... 141, 142, 164, 206, 207, 208, 211

ConfigurableContainer .. 77, 78, 82, 83, 84, 86

ConfigurationDecision ... 29, 78, 79, 80

ConfigurationDecisionFolder ... 80, 82

ConfigurationDecisionModel .. 77, 78, 79, 80, 81, 82, 83, 87

ConfigurationDecisionModelEntry ... 78, 80, 81

ContainerConfiguration ... 82

Context20, 21, 22, 23, 31, 32, 51, 58, 65, 68, 69, 85, 95, 97, 106, 115, 144, 174, 189, 194, 195,
219

ControllabilityClassKind ... 143, 147

DelayConstraint ... 121, 124, 125, 128, 129, 132, 134

Dependability ... 100, 140, 141, 143, 144, 145, 146, 147, 148, 203, 236

DeriveRequirement ... 90, 92, 202

DesignFunctionPrototype .. 22, 44, 45, 52, 53

DesignFunctionType ... 25, 43, 44, 45, 52, 53, 196, 198

DesignLevel .. 21, 22, 23, 40, 43, 44, 45, 46, 51, 173, 202

DevelopmentCategoryKind .. 145, 148

DeviationAttributeSet ... 36, 38

DeviationPermissionKind ... 36, 37

EAArrayValue .. 183

EABoolean .. 160, 177, 184, 202

EABooleanValue ... 183

EACompositeValue ... 184

EAConnector ... 47, 59, 60, 157, 189

EADatatype29, 48, 49, 54, 144, 151, 152, 156, 157, 158, 176, 177, 178, 179, 181, 183, 184, 185,
186, 197, 205, 222

EADatatypePrototype .. 54, 177, 178, 184

EADirectionKind .. 45, 48, 54, 59

EAST-ADL Domain Model Specification version V2.1.12

239 (244)

EAElement26, 29, 36, 42, 46, 48, 49, 50, 53, 54, 56, 59, 64, 71, 72, 77, 81, 84, 86, 87, 94, 98,
102, 115, 116, 151, 152, 153, 157, 163, 178, 180, 189, 190, 193, 194, 204, 208, 221, 222, 223,
225, 226, 227, 228, 232, 234, 235, 236

EAEnumerationValue .. 184

EAExpression ... 71, 85, 116, 137, 138, 160, 185, 223, 228, 234

EANumerical ... 178, 179, 181, 185, 202

EANumericalValue .. 185

EAPackage ... 190, 191, 192

EAPackageableElement ... 180, 182, 189, 190, 191, 195, 197, 198, 199

EAPort ... 49, 59, 60, 156, 191

EAPrototype .. 50, 58, 153, 191

EAString .. 179, 186, 202

EAStringValue ... 185, 198

EAType ... 51, 58, 154, 191

EAValue ... 49, 160, 172, 183, 184, 185, 186, 196, 197, 198, 232

EAXML .. 192

ElectricalComponent ... 57, 202, 203

Enumeration27, 33, 37, 44, 45, 57, 61, 70, 73, 93, 94, 124, 138, 143, 145, 148, 151, 153, 159,
167, 172, 177, 179, 180, 184, 203

EnumerationLiteral .. 180, 184, 203

Environment .. 19, 46, 50, 64, 65

ErrorBehavior .. 151, 152, 153, 155

ErrorBehaviorKind ... 152, 153

ErrorModelPrototype ... 153, 154, 155, 218

ErrorModelType... 144, 152, 153, 154, 155, 156, 157, 219

Event113, 114, 122, 123, 125, 127, 128, 129, 130, 131, 132, 133, 136, 137, 138, 139, 223, 233,
236

EventChain .. 114, 120, 122, 126, 127, 130, 226

EventFaultFailure .. 136

EventFeatureFlaw ... 136

EventFunction ... 71, 137

EventFunctionClientServerPort ... 137, 138

EventFunctionClientServerPortKind .. 137, 138

EventFunctionFlowPort ... 137, 138, 139

ExecutionTimeConstraint .. 62, 125

ExposureClassKind ... 145, 147

Extend ... 101, 103

ExtensionPoint .. 101, 102, 103

EAST-ADL Domain Model Specification version V2.1.12

240 (244)

ExternalEvent .. 139

FailureOutPort ... 152, 155, 156, 158

FaultFailure ... 136, 144, 160, 161, 236

FaultFailurePort ... 156, 157

FaultFailurePropagationLink .. 155, 157

FaultInPort .. 152, 155, 157, 158

Feature .. 19, 25, 28, 29, 30, 31, 32, 37, 38, 79

FeatureConfiguration... 81, 82, 83, 85

FeatureConstraint ... 29, 32

FeatureFlaw .. 136, 144, 146, 236

FeatureGroup .. 30, 32

FeatureLink ... 29, 30, 31, 32, 33, 34

FeatureModel .. 23, 25, 29, 31, 32, 36, 77, 79, 82, 83, 85, 87

FeatureTreeNode .. 28, 29, 30, 32

Float .. 29, 60, 62, 160, 161, 174, 181, 182

FunctionalDevice ... 45, 46, 50, 65, 199

FunctionAllocation ... 42, 46, 48, 203

FunctionalSafetyConcept .. 141, 144, 162, 163

FunctionBehavior .. 43, 51, 67, 69, 70, 71, 72, 203, 219

FunctionBehaviorKind ... 67, 69, 70

FunctionClientServerInterface ... 47, 53, 54

FunctionClientServerPort .. 44, 47, 54, 137, 138

FunctionConnector .. 47, 48, 51, 84, 86, 203, 217

FunctionFlowPort .. 48, 49, 54, 72, 139

FunctionPort ... 47, 48, 49, 50, 51, 52, 54, 65, 71, 84, 86, 141, 156, 223

FunctionPowerPort .. 50

FunctionPrototype 42, 44, 48, 50, 51, 65, 71, 72, 77, 84, 86, 115, 137, 141, 154, 205, 218

FunctionTrigger ... 51, 67, 69, 70, 71, 72, 137, 219

FunctionType25, 32, 42, 44, 48, 50, 51, 52, 69, 70, 71, 72, 77, 78, 87, 137, 141, 154, 155, 205,
219

GenericConstraint ... 171, 172, 174

GenericConstraintKind .. 171, 172

GenericConstraintSet .. 174

Ground .. 141, 166, 167, 168

HardwareBusKind ... 57, 60

HardwareComponentPrototype ... 22, 58, 84, 86, 141, 154, 203, 218

HardwareComponentType 52, 55, 57, 58, 59, 61, 62, 78, 141, 155, 219, 223

HardwareConnector .. 58, 59, 60, 216, 217

EAST-ADL Domain Model Specification version V2.1.12

241 (244)

HardwareFunctionType ... 50, 52, 53, 56, 59, 63

HardwarePin ... 56, 58, 59, 60, 62, 86, 141, 156, 223

HardwarePort .. 58, 60, 84, 223

HardwarePortConnector .. 58, 60

Hazard .. 100, 141, 144, 146, 147, 148, 203, 233

HazardousEvent .. 100, 141, 144, 147, 148, 163, 203, 236

Identifiable77, 78, 80, 84, 85, 86, 95, 98, 108, 110, 141, 154, 166, 172, 174, 189, 190, 192, 193,
196, 198, 199

Identifier .. 192, 194

ImplementationLevel ... 20, 22, 23, 203

Include .. 102, 103

InputSynchronizationConstraint ... 126, 127

Integer ... 123, 130, 176, 180, 181, 211

InternalBinding .. 77, 81, 82, 83

InternalFaultPrototype ... 141, 152, 155, 158

IOHardwarePin .. 60, 61, 203

IOHardwarePinKind ... 61

Item ... 141, 142, 144, 146, 148, 163

LifecycleStageKind .. 141, 167, 168

LocalDeviceManager ... 21, 53, 199

LogicalEvent .. 223, 226, 227, 236

LogicalPath ... 226, 227

LogicalTimeCondition .. 224, 228, 229, 232, 233, 234, 235

LogicalTransformation ... 226, 227, 229

Mission .. 208, 211

Mode .. 67, 69, 70, 72, 73, 95, 113, 116, 139, 141, 147, 163, 172, 219, 233

ModeEvent .. 139

ModeGroup ... 69, 73

Node ... 61, 62, 173, 203

Numerical .. 179, 185, 202

Operation .. 47, 53, 54, 228

OperationalSituation .. 92, 97, 141, 147

OrderConstraint ... 126, 127

OutputSynchronizationConstraint .. 126, 127

PatternConstraint .. 128

PeriodicConstraint ... 128, 129

PortGroup ... 51, 54, 203

PowerHardwarePin ... 62, 203, 204

EAST-ADL Domain Model Specification version V2.1.12

242 (244)

PrecedenceConstraint ... 114, 115, 204

PrivateContent .. 77, 84

ProblemStatement .. 208, 209, 211

ProcessFaultPrototype .. 141, 152, 155, 158

ProductPositioning .. 208, 209

QualityRequirement ... 92, 93, 94

QualityRequirementKind.. 93, 94

Quantification .. 222, 223, 228, 229, 233, 235

QuantitativeSafetyConstraint ... 141, 144, 160, 161

Quantity ... 180, 181, 182

RangeableValueType .. 181, 182, 185, 204

Rationale ... 138, 141, 166, 168, 193

ReactionConstraint .. 122, 129, 130

Realization .. 19, 22, 46, 178, 193, 194, 204

RedefinableElement .. 102, 103

Ref .. 95, 116

Referrable ... 192, 194, 200

Refine .. 90, 94, 100, 116, 172, 204, 220

Relationship ... 30, 97, 101, 102, 103, 189, 193, 194, 195, 218, 222

RepetitionConstraint .. 118, 130, 131, 132

Requirement18, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 106, 107, 116, 141, 146, 162, 163, 164,

172, 194, 196, 202, 204

RequirementsHierarchy ... 95, 96, 97, 162, 163, 204

RequirementsLink ... 96

RequirementsModel .. 97, 196

RequirementsRelationship .. 92, 94, 96, 97, 98, 106, 141, 147

RequirementsRelationshipGroup... 97, 98

ReuseMetaInformation .. 84, 85, 86

SafetyCase.. 140, 141, 144, 165, 166, 167, 168

SafetyConstraint .. 142, 144, 161

SafetyGoal .. 142, 144, 162, 163, 204

Satisfy ... 90, 95, 98, 99, 100, 204

SelectionCriterion .. 80, 85

Sensor ... 53, 62, 63, 204

SeverityClassKind ... 142, 147, 148

SporadicConstraint .. 129, 131, 132

Stakeholder ... 207, 209, 210, 211

StakeholderNeed .. 211

EAST-ADL Domain Model Specification version V2.1.12

243 (244)

State.. 141, 232, 233, 234, 235

StateEvent... 233

String28, 29, 30, 31, 69, 70, 72, 73, 78, 79, 84, 87, 95, 109, 147, 152, 168, 179, 182, 185, 188,
190, 192, 195, 199, 202, 208, 209, 210, 211

StrongDelayConstraint .. 127, 131, 132, 133

StrongSynchronizationConstraint .. 133

SynchronizationConstraint ... 126, 127, 132, 133, 134

SynchronousTransition .. 233, 234

System ... 18, 19, 20, 22, 65, 220

SystemModel ... 20, 22, 23, 31, 64, 65, 142, 166, 204, 207, 208

TakeRateConstraint .. 174

TechnicalSafetyConcept ... 142, 144, 163, 164

TemporalConstraint .. 216, 219, 220, 230, 231, 232, 233, 234, 235, 236

Timing2, 18, 45, 67, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,

131, 132, 133, 136, 137, 138, 139, 204, 226, 232, 233

TimingConstraint .. 114, 115, 116, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133

TimingDescription ... 113, 114, 115, 116

TimingDescriptionEvent .. 136

TimingExpression116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134

TraceableSpecification47, 73, 84, 92, 94, 95, 98, 101, 103, 107, 108, 109, 110, 142, 146, 147,
148, 154, 160, 161, 165, 166, 167, 168, 171, 178, 189, 195, 207, 208, 209, 210, 211, 218

TransformationOccurrence .. 227, 228, 235

Transition .. 231, 233, 234, 235

TransitionEvent ... 216, 217, 232, 234, 236

TriggerPolicyKind .. 71, 73

Unit ... 18, 62, 179, 182

UseCase ... 97, 98, 100, 101, 102, 103, 142, 147

UserAttributeDefinition .. 196, 197, 198, 199, 200

UserAttributedElement .. 196, 198

UserElementType.. 97, 196, 197, 198, 199, 200

Variability .. 23, 26, 27, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87

VariabilityDependencyKind .. 31, 33, 87

VariableElement .. 77, 84, 85, 86, 87

VariationGroup .. 33, 34, 78, 87

VehicleFeature .. 19, 32, 36, 37, 38, 39, 142, 148, 218

VehicleLevel .. 23, 24, 25, 32, 39, 85, 87, 204

VehicleLevelBinding .. 85, 87

EAST-ADL Domain Model Specification version V2.1.12

244 (244)

VehicleSystem .. 211

VerificationValidation ... 104, 106, 107, 108, 109, 110, 205

Verify ... 90, 106, 107, 205

VVActualOutcome ... 107, 109, 116, 172

VVCase ... 106, 107, 108, 109, 110, 205

VVIntendedOutcome ... 107, 108, 109, 116, 172

VVLog ... 107, 108, 109

VVProcedure ... 104, 106, 107, 108, 109, 110

VVStimuli... 107, 108, 109, 110

VVTarget ... 106, 107, 108, 110, 111

Warrant ... 142, 166, 168

	Revision History
	USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
	Table of Contents – Overview
	Table of Contents - Complete
	Part I Introduction
	Figure 1. This diagram shows dependencies between packages in the domain model. All packages except the AUTOSAR package depend on the EAST-ADL Infrastructure package. The AUTOSAR package contains some concepts that EAST-ADL elements in the Infrastruc...
	Figure 2. Packages in the EAST-ADL domain model.

	1 Language Formalism
	1.1 Levels of Formalism
	1.2 Specification Structure
	1.2.1 Overview
	1.2.2 Element Descriptions

	2 Abbreviations
	Part II Structural Constructs
	3 SystemModeling
	3.1 Overview
	Figure 3. Diagram for SystemModel. Note how the ImplementationLevel refers to the System from the AUTOSAR SystemTemplate.

	3.2 Element Descriptions
	3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	3.2.2 DesignLevel (from SystemModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	3.2.4 SystemModel (from SystemModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	3.2.5 VehicleLevel (from SystemModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4 FeatureModeling
	4.1 Overview
	Figure 4. Diagram for FeatureModeling.

	4.2 Element Descriptions
	4.2.1 BindingTime (from FeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.2 BindingTimeKind (from FeatureModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	4.2.3 Feature (from FeatureModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.4 FeatureConstraint (from FeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.5 FeatureGroup (from FeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.6 FeatureLink (from FeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.7 FeatureModel (from FeatureModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	4.2.9 VariabilityDependencyKind (from FeatureModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	5 VehicleFeatureModeling
	5.1 Overview
	Figure 5. Diagram for VehicleFeatureModeling.

	5.2 Element Descriptions
	5.2.1 DeviationAttributeSet (from VehicleFeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	5.2.3 VehicleFeature (from VehicleFeatureModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6 FunctionModeling
	6.1 Overview
	Figure 6. Diagram for FunctionModeling showing the concepts for function modeling at different abstraction levels, elements in the DesignLevel are allocateable on elements in the hardware design architecture.
	Figure 7. Diagram for FunctionPorts and their respective typing.

	6.2 Element Descriptions
	6.2.1 AllocateableElement (from FunctionModeling) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.2 Allocation (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.3 AnalysisFunctionPrototype (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.4 AnalysisFunctionType (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.5 BasicSoftwareFunctionType (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.6 ClientServerKind (from FunctionModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	6.2.7 DesignFunctionPrototype (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.8 DesignFunctionType (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.9 EADirectionKind (from FunctionModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	6.2.10 FunctionalDevice (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.11 FunctionAllocation (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	6.2.12 FunctionClientServerInterface (from FunctionModeling) «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.13 FunctionClientServerPort (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	6.2.15 FunctionFlowPort (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.17 FunctionPowerPort (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.20 HardwareFunctionType (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.21 LocalDeviceManager (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.22 Operation (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	6.2.23 PortGroup (from FunctionModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7 HardwareModeling
	7.1 Overview
	Figure 8. Diagram for HardwareModeling.

	7.2 Element Descriptions
	7.2.1 Actuator (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.2 AllocationTarget (from HardwareModeling) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.3 CommunicationHardwarePin (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.4 ElectricalComponent (from HardwareModeling) «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.5 HardwareBusKind (from HardwareModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	7.2.6 HardwareComponentPrototype (from HardwareModeling) «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.7 HardwareComponentType (from HardwareModeling) «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.8 HardwareConnector (from HardwareModeling) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	7.2.9 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.10 HardwarePort (from HardwareModeling) «atpStructureElement»
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	7.2.11 HardwarePortConnector (from HardwareModeling) «atpStructureElement»
	Generalizations
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	7.2.12 IOHardwarePin (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.13 IOHardwarePinKind (from HardwareModeling) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	7.2.14 Node (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.15 PowerHardwarePin (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	7.2.16 Sensor (from HardwareModeling)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	8 Environment
	8.1 Overview
	Figure 9. Diagram for Environment. The EnvironmentModel is a packageable element, but note that it is not a part of the SystemModel.

	8.2 Element Descriptions
	8.2.1 ClampConnector (from Environment) «atpStructureElement»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	8.2.2 Environment (from Environment)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part III Behavioral Constructs
	9 Behavior
	9.1 Overview
	Figure 10. Diagram for the behavior of a function.
	Figure 11. Diagram for behavior model organization.

	9.2 Element Descriptions
	9.2.1 Behavior (from Behavior)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	9.2.2 FunctionBehavior (from Behavior)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	9.2.3 FunctionBehaviorKind (from Behavior) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	9.2.4 FunctionTrigger (from Behavior)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	9.2.5 Mode (from Behavior)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	9.2.6 ModeGroup (from Behavior)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	9.2.7 TriggerPolicyKind (from Behavior) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	Part IV Variability
	10 Variability
	10.1 Overview
	Figure 12. Diagram depicting the organization of variability modeling elements.
	Figure 13. Diagram depicting the elements involved in artifact-level variation management.
	Figure 14. Diagram depicting the elements for configuration modeling.

	10.2 Element Descriptions
	10.2.1 ConfigurableContainer (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.2 ConfigurationDecision (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.3 ConfigurationDecisionFolder (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.4 ConfigurationDecisionModel (from Variability) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.6 ContainerConfiguration (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.7 FeatureConfiguration (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.8 InternalBinding (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.9 PrivateContent (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.10 ReuseMetaInformation (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.11 SelectionCriterion (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.12 Variability (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.13 VariableElement (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.14 VariationGroup (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	10.2.15 VehicleLevelBinding (from Variability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part V Requirements
	11 Requirements
	11.1 Overview
	Figure 15. Diagram for Requirements overview.
	Figure 16. Diagram for Relationships including Requirement.
	Figure 17. Diagram for Requirements organization.

	11.2 Element Descriptions
	11.2.1 DeriveRequirement (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.2 OperationalSituation (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.3 QualityRequirement (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.4 QualityRequirementKind (from Requirements) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	11.2.5 Refine (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	11.2.6 Requirement (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.7 RequirementsHierarchy (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.8 RequirementsLink (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.9 RequirementsModel (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.10 RequirementsRelationship (from Requirements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.11 RequirementsRelationshipGroup (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	11.2.12 Satisfy (from Requirements)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	12 UseCases
	12.1 Overview
	Figure 18. Diagram for UseCase.

	12.2 Element Descriptions
	12.2.1 Actor (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	12.2.2 Extend (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	12.2.3 ExtensionPoint (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	12.2.4 Include (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	12.2.5 RedefinableElement (from UseCases) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	12.2.6 UseCase (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13 VerificationValidation
	13.1 Overview
	Figure 19. Diagram for Verification & Validation.
	Figure 20. Diagram for Verification and Validation Organization.

	13.2 Element Descriptions
	13.2.1 VerificationValidation (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.2 Verify (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.3 VVActualOutcome (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.4 VVCase (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	13.2.5 VVIntendedOutcome (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.6 VVLog (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.7 VVProcedure (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.8 VVStimuli (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	13.2.9 VVTarget (from VerificationValidation)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	Part VI Timing
	14 Timing
	14.1 Overview
	Figure 21. Basic TADL2 elements organized in Timing, with TimingConstraints referring to EAST-ADL Mode.

	14.2 Element Descriptions
	14.2.1 Event (from Timing) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	14.2.2 EventChain (from Timing)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	14.2.3 PrecedenceConstraint (from Timing)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	14.2.4 Timing (from Timing)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	14.2.5 TimingConstraint (from Timing) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	14.2.6 TimingDescription (from Timing) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	14.2.7 TimingExpression (from Timing)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15 TimingConstraints
	15.1 Overview
	Figure 22. The first of two sets with TADL2 constraints with attributes of type TimingExpression and references to events.
	Figure 23. The TADL2 constraints that refer to EventChain, and have attributes of type TimingExpression.
	Figure 24. The second of two sets with TADL2 constraints with attributes of type TimingExpression and references to events. Also shown is the ComparisonConstraint with attributes of type TimingExpression.

	15.2 Element Descriptions
	15.2.1 AgeConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.2 ArbitraryConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.3 BurstConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.4 ComparisonConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.5 ComparisonKind (from TimingConstraints) «enumeration»
	Generalizations
	Enumeration Literals
	Associations
	Constraints
	Semantics

	15.2.6 DelayConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.7 ExecutionTimeConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.8 InputSynchronizationConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.9 OrderConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.10 OutputSynchronizationConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.11 PatternConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.12 PeriodicConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.13 ReactionConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.14 RepetitionConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.15 SporadicConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.16 StrongDelayConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.17 StrongSynchronizationConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	15.2.18 SynchronizationConstraint (from TimingConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	16 Events
	16.1 Overview
	Figure 25. The events for EAST-ADL functional modeling.
	Figure 3. The Events are defined within AUTOSAR and EAST-ADL. These events refer to the structural models of AUTOSAR and EAST-ADL respectively.

	16.2 Element Descriptions
	16.2.1 AUTOSAREvent (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	16.2.2 EventFaultFailure (from Events)
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	16.2.3 EventFeatureFlaw (from Events)
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	16.2.4 EventFunction (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	16.2.5 EventFunctionClientServerPort (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	16.2.6 EventFunctionClientServerPortKind (from Events) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	16.2.7 EventFunctionFlowPort (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	16.2.8 ExternalEvent (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	16.2.9 ModeEvent (from Events)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part VII Dependability
	17 Dependability
	17.1 Overview
	Figure 3. Diagram for organization of dependability related information.
	Figure 3. Diagram for Dependability.

	17.2 Element Descriptions
	17.2.1 ControllabilityClassKind (from Dependability) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	17.2.2 Dependability (from Dependability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	17.2.3 DevelopmentCategoryKind (from Dependability) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	17.2.4 ExposureClassKind (from Dependability) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	17.2.5 FeatureFlaw (from Dependability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	17.2.6 Hazard (from Dependability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	17.2.7 HazardousEvent (from Dependability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	17.2.8 Item (from Dependability)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	17.2.9 SeverityClassKind (from Dependability) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	18 ErrorModel
	18.1 Overview
	Figure 3. Diagram for ErrorBehavior.
	Figure 3. The EAST-ADL metaclasses for defining the error model structure.

	18.2 Element Descriptions
	18.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.2 ErrorBehavior (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.3 ErrorBehaviorKind (from ErrorModel) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	18.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	18.2.5 ErrorModelType (from ErrorModel) «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.6 FailureOutPort (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	18.2.8 FaultFailurePropagationLink (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	18.2.9 FaultInPort (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.10 InternalFaultPrototype (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	18.2.11 ProcessFaultPrototype (from ErrorModel)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	19 SafetyConstraints
	19.1 Overview
	Figure 26. Diagram for SafetyConstraints.

	19.2 Element Descriptions
	19.2.1 ASILKind (from SafetyConstraints) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	19.2.2 FaultFailure (from SafetyConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	19.2.3 QuantitativeSafetyConstraint (from SafetyConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	19.2.4 SafetyConstraint (from SafetyConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	20 SafetyRequirement
	20.1 Overview
	Figure 27. Diagram for Safety Concepts.

	20.2 Element Descriptions
	20.2.1 FunctionalSafetyConcept (from SafetyRequirement)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	20.2.2 SafetyGoal (from SafetyRequirement)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	20.2.3 TechnicalSafetyConcept (from SafetyRequirement)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	21 SafetyCase
	21.1 Overview
	Figure 28.

	21.2 Element Descriptions
	21.2.1 Claim (from SafetyCase)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	21.2.2 Ground (from SafetyCase)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	21.2.3 LifecycleStageKind (from SafetyCase) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	21.2.4 SafetyCase (from SafetyCase)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	21.2.5 Warrant (from SafetyCase)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part VIII Generic Constraints
	22 GenericConstraints
	22.1 Overview
	Figure 29. Diagram of GenericConstraint.

	22.2 Element Descriptions
	22.2.1 GenericConstraint (from GenericConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	22.2.2 GenericConstraintKind (from GenericConstraints) «enumeration»
	Generalizations
	Description
	Enumeration Literals
	Associations
	Constraints
	Semantics

	22.2.3 GenericConstraintSet (from GenericConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	22.2.4 TakeRateConstraint (from GenericConstraints)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part IX Infrastructure
	23 Datatypes
	23.1 Overview
	Figure 30. Diagram for Datatypes.

	23.2 Element Descriptions
	23.2.1 ArrayDatatype (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.2 CompositeDatatype (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.3 EABoolean (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.4 EADatatype (from Datatypes) {abstract} «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.5 EADatatypePrototype (from Datatypes) «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.6 EANumerical (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.7 EAString (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.8 Enumeration (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.9 EnumerationLiteral (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.10 Quantity (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.11 RangeableValueType (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	23.2.12 Unit (from Datatypes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24 Values
	24.1 Overview
	Figure 31.

	24.2 Element Descriptions
	24.2.1 EAArrayValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.2 EABooleanValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.3 EACompositeValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.4 EAEnumerationValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.5 EAExpression (from Values) «atpMixedString»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.6 EANumericalValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.7 EAStringValue (from Values)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	24.2.8 EAValue (from Values) {abstract} «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25 Elements
	25.1 Overview
	Figure 32. Diagram for RelationshipModeling.
	Figure 33. Diagram for Elements.
	Figure 34. Diagram for abstract structure.

	25.2 Element Descriptions
	25.2.1 Comment (from Elements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.2 Context (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.3 EAConnector (from Elements) {abstract}
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	25.2.4 EAElement (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.5 EAPackage (from Elements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.6 EAPackageableElement (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.7 EAPort (from Elements) {abstract}
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	25.2.8 EAPrototype (from Elements) {abstract}
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	25.2.9 EAType (from Elements) {abstract}
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	25.2.10 EAXML (from Elements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.11 Identifiable (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.12 Rationale (from Elements)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.13 Realization (from Elements)
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	25.2.14 Referrable (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.15 Relationship (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	25.2.16 TraceableSpecification (from Elements) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	26 UserAttributes
	26.1 Overview
	Figure 35. Diagram for User Attributes.

	26.2 Element Descriptions
	26.2.1 UserAttributeDefinition (from UserAttributes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	26.2.2 UserAttributedElement (from UserAttributes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	26.2.3 UserElementType (from UserAttributes)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	Part X Annexes
	27 Annex A: Notation
	 Actuator (from HardwareModeling)
	 AnalysisLevel (from SystemModeling)
	 ArrayDatatype (from Datatypes)
	 CommunicationHardwarePin (from HardwareModeling)
	 CompositeDatatype (from Datatypes)
	 DeriveRequirement (from Requirements)
	 DesignLevel (from SystemModeling)
	 EABoolean (from Datatypes)
	 EANumerical (from Datatypes)
	 EAString (from Datatypes)
	 ElectricalComponent (from HardwareModeling)
	 Enumeration (from Datatypes)
	 EnumerationLiteral (from Datatypes)
	 FunctionAllocation (from FunctionModeling)
	 FunctionBehavior (from Behavior)
	 FunctionConnector (from FunctionModeling)
	 HardwareComponentPrototype (from HardwareModeling)
	 Hazard (from Dependability)
	 HazardousEvent (from Dependability)
	 ImplementationLevel (from SystemModeling)
	 IOHardwarePin (from HardwareModeling)
	 Node (from HardwareModeling)
	 PortGroup (from FunctionModeling)
	 PowerHardwarePin (from HardwareModeling)
	 PrecedenceConstraint (from Timing)
	 RangeableValueType (from Datatypes)
	 Realization (from Elements)
	 Refine (from Requirements)
	 Requirement (from Requirements)
	 RequirementsHierarchy (from Requirements)
	 SafetyGoal (from SafetyRequirement)
	 Satisfy (from Requirements)
	 Sensor (from HardwareModeling)
	 SystemModel (from SystemModeling)
	 VehicleLevel (from SystemModeling)
	 Verify (from VerificationValidation)
	 EADatatype (from Datatypes)
	 FunctionPrototype (from FunctionModeling)
	 FunctionType (from FunctionModeling)

	28 Annex B: Needs
	28.1 Overview
	Figure 36. Diagram for Needs.

	28.2 Element Descriptions
	28.2.1 ArchitecturalDescription (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.2 ArchitecturalModel (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.3 Architecture (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.4 BusinessOpportunity (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.5 Concept (from Needs) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.6 Mission (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.7 ProblemStatement (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.8 ProductPositioning (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.9 Stakeholder (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.10 StakeholderNeed (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	28.2.11 VehicleSystem (from Needs)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	29 Annex C: BehaviorDescription
	30 BehaviorDescription
	30.1 Overview
	Figure 37. Diagram for dependencies of BehaviorConstraints.
	Figure 38. BehaviorConstraintParameterBinding
	Figure 39. Diagram for organization in BehaviorConstraints.
	Figure 40. LogicalTimeConditionMappingToTiming

	30.2 Element Descriptions
	30.2.1 BehaviorConstraintBindingAttribute (from BehaviorDescription)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	30.2.2 BehaviorConstraintBindingEvent (from BehaviorDescription)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	30.2.3 BehaviorConstraintInternalBinding (from BehaviorDescription) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	30.2.4 BehaviorConstraintParameter (from BehaviorDescription) {abstract}
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	30.2.5 BehaviorConstraintPrototype (from BehaviorDescription) «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Dependencies
	Constraints
	Semantics

	30.2.6 BehaviorConstraintTargetBinding (from BehaviorDescription)
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	30.2.7 BehaviorConstraintType (from BehaviorDescription) «atpType»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	31 AttributeQuantificationConstraint
	31.1 Overview
	Figure 41. AttributeQuantificationConstraint

	31.2 Element Descriptions
	31.2.1 Attribute (from AttributeQuantificationConstraint) «atpPrototype»
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	31.2.2 AttributeQuantificationConstraint (from AttributeQuantificationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	31.2.3 BehaviorAttributeBinding (from AttributeQuantificationConstraint)
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	31.2.4 LogicalEvent (from AttributeQuantificationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	31.2.5 Quantification (from AttributeQuantificationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	32 ComputationConstraint
	32.1 Overview
	Figure 42. ComputationConstraint

	32.2 Element Descriptions
	32.2.1 ComputationConstraint (from ComputationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	32.2.2 LogicalPath (from ComputationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	32.2.3 LogicalTransformation (from ComputationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	32.2.4 TransformationOccurrence (from ComputationConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33 TemporalConstraint
	33.1 Overview
	Figure 43. TemporalConstraint
	Figure 44. EventOccurrenceMappingToEvents
	Figure 45. Diagram for Transition.

	33.2 Element Descriptions
	33.2.1 LogicalTimeCondition (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33.2.2 State (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33.2.3 StateEvent (from TemporalConstraint)
	Generalizations
	Attributes
	Associations
	Constraints
	Semantics

	33.2.4 SynchronousTransition (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33.2.5 TemporalConstraint (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33.2.6 Transition (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	33.2.7 TransitionEvent (from TemporalConstraint)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics

	34 Index

